
Inl. J. Heal Mass Transfer. Vol. 6, pp. 147-189. Pergamoo Press 1963. Printed in Great Britain. 

HEAT TRANSFER ACROSS TURBULENT, INCOMPRESSIBLE 

BOUNDARY LAYERS* 

J. KESTIN and P. D. RICHARDSON 

Brown University, Providence 12, Rhode Island, U.S.A. 

Abstract-The paper contains a survey of the present status of knowledge concerning the transfer of 
heat by forced convection across incompressible turbulent boundary layers. The foundations of the 
semi-empirical theory are examined from first principles and the limitations of the theory are carefully 
noted. Elementary theories are described and an outline of D. B. Spalding’s mathematicallv exact 
theory is given. The limiting cases of very high and very low Prandtl numbers are discussed. Finally, 
an outline of W. V. R. Malkus’ theory of turbulent processes is sketched. 

A conscientious attempt has been made to clarify all physical assumptions, to identify the major 
fundamental problems which require attention and to indicate directions in which the semi-empirical 

theory can be extended. 

NOMENCLATURE 

empirical coefficient ; 

ktlcp; 

w/p; 
empirical coefficient; 
constants of integration; 
ratio, boundary layer displacement 
thickness to momentum thickness; 
empirical coefficient ; 
Loitsianskii parameter; reference 
length; 
temperature; 
local free stream velocity; 
thermal diffusivity; 
specific heat at constant pressure; 
velocity vector; 
exponent in viscosity-temperature 
relations; 
x-component of gravitational field; 
thermal conductivity of fluid; 
(x - x0), positive only; 
coefficient; 
pressure; 
law of the wake expression; 
heat flux; 
radius ; 
time co-ordinate; 

* Prepared for the International Colloquium on 
Turbulence, 28 August-2 September 1961, Marseilles, 
France. A brief outline is to be published in the Col- 
loquium Proceedings. 

u, v, W, velocity components in directions of 
co-ordinates x, y, z; 

V*, friction velocity 2)* = 2/(~/p); 
4 Y, z, orthogonal curvilinear co-ordinates. 

Greek symbols 
empirical constant ; 
heat flux parameter (/3 = &,v,/ 
c,T,7,); also, coefficient of thermal 
expansion (Section 19); 
incomplete gamma function; 
gamma function ; 
boundary layer thickness; (unsub- 
scripted) velocity boundary layer 
thickness; 
distance from surface greater than 6 
and 8~; 
velv; 
similarity parameter ~=(y+)~Pr/9x+; 
Tw - T; 
coefficient ; 
wavelength; 
dynamical viscosity; 
maximum change in p across a 
boundary layer ; 
kinematic viscosity; 
pressure gradient function; 
fluid density; 
shear stress in fluid; 
dissipation function; 
stream function. 
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Dimensionless parameters 

Cf? local coefficient of friction: 
I+ 
u;, 

Sf,h.(-W d.u; 
ii/v, ; 

Xi-, xv&; 
Yf9 yv,lv; 
V*, X4rwIP) ; 

2 
velv; 

Ni, 
Eckert number ; 
Nusselt number ; 

Pr, Prandtl number ; 
Rez, Reynolds number, based on x; 
Ri, Richardson number ; 

SP, Spalding function; 
St, Stanton number. 

Subscripts 
b, buffer layer ; 

7 
effective ; 
laminar (layer); 

0, property values relative to those of 
air; x0, hydrodynamic starting 
length ; 

r, with a rough wall; 
S, in a fluid stream; 
1, turbulent; &, outer limit of law of 

the wall ; 
T, thermal; 
W, at the surface ; 

x, value based on x; 
=J, value deep upstream and cross- 

stream. 

Superscripts 
+ , dimensionless; 
I 
, fluctuating component; 

- 
, arithmetic time average. 

1. INTRODUCTION 

THE MAIN objective of a theory of convective 
heat transfer is to permit the calculation of the 
heat flux 4, i.e. the rate of flow of heat per unit 
area and time transferred between a solid surface 
and a fluid stream in contact with it. It is desir- 
able that such a calculation should be possible 
for any specified surface under any boundary 
and initial conditions. 

This survey is restricted to the study of forced 
convection where the flow field consists of a 

two-dimensional turbulent boundary layer ad- 
jacent to a surface whose temperature, T,, 
differs from that of the fluid stream, T,s, at some 
distance from the surface, and where the density 
variations of the fluid can be disregarded, 
whether they are caused by pressure differences 
or by thermal expansion. 

The corresponding problem involving laminar 
flow can be reduced, from first principles, to a 
set of three simultaneous, partial differential 
equations for the velocity components u. u, and 
for the temperature difference 

6 = Tw - T. (1.1) 

Given the boundary and initial conditions for 
the flow and for the temperature fields, and given 
the properties of the fluid, it is only necessary to 
find mathematical methods, exact or approxi- 
mate, in order to determine the local heat flux 
at the wall, which is then given by 

&J(x, Y, 0 = k g ( 1 W’ 
(at wall). (1.2) 

Hence the difficulties are exclusively of a mathe- 
matical nature. 

In the study of turbulent convection a tract- 
able mathematical formulation rests on a number 
of assumptions, some of which are heuristic and 
have not been confirmed by experiment. Con- 
sequently, it is possible to suggest several 
alternative analytic formulations. The complete 
reduction of the problem to explicit mathe- 
matical terms which are nearly, but not quite, 
equivalent to the formulation of the laminar 
problem has only been achieved very recently, 
notably by Spalding [ 11. In this paper, we shall 
review the main developments which have 
resulted in the above formulation of the problem. 
It will, however, be found that several crucial 
questions of a physical nature must be answered 
before the formulation can be accepted. 

The first observation of a region within a 
fluid, close to the surface of a body, which offers 
resistance to the transfer of heat was made by 
P&let in 1844 [2]. Reynolds [3] recognized that 
an understanding of local conditions within the 
flow field would provide the key for an analytical 
theory of the transfer of heat. He also realized 
that in turbulent flows there must exist an 
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intimate relation between the local shearing 
stress and the local heat flux since both depend 
upon the same basic mechanism. Prandtl[4] and 
Taylor [5] independently realized that the ideas 
propounded by Reynolds, coupled with the 
recognition of the boundary layer character of 
the temperature field as well as the velocity 
field, could provide a means for determining 
local rates of heat transfer. This approach was 
developed and refined by several workers, as is 
described in Sections 12 and 13. The application 
of these developments to the calculation of heat 
transfer across turbulent boundary layers is due 
to Spalding [l]. 

Before significant analytical developments 
were made, a systematic correlation of experi- 
mental data by use of the principles of dimen- 
sional analysis and physical similarity was begun 
by Nusselt [6] and extended by many others. 
Ignoring the details of the structure of flow 
patterns, these correlations allow mean heat 
transfer rates from surfaces to be estimated for 
many cases of practical importance. They lead 
to a lucid classification of numerous problems 
of considerable complexity and greatly simplify 
the task of performing experiments. An organ- 
ized collection of such correlations may be found 
in the compendium of McAdams [7]. 

2. THE CENTRAL PROBLEM IN HEAT 

TRANSFER 

As outlined in the introduction, the central 
problem in the analytic theory of heat transfer 

FIG. 1. The central problem in heat transfer. 

can be formulated as follows (Fig. 1). Given a 
cylindrical surface S with a prescribed tempera- 
ture distribution 7’,(x) over which there exists a 
velocity boundary layer 6(x) created by an 
external stream U(X) and a thermal boundary 
layer ST(X) created by the temperature distribu- 
tion Ts(x) in the free stream, and given the veloc- 
ity as well as the temperature distribution, u(v) 
and B(y) at some section x = x0, determine the 
total temperature field 0(x, u), and hence the 
heat flux &(x) from (1.2).* In the present paper 
attention is restricted exclusively to cases when 
the resulting boundary layer is turbulent but 
incompressible. Consequently, all preceding 
quantities constitute time averages. 

It is immediately apparent that the local heat 
flux, (1.2), is analogous in form to the local 
shearing stress 

au 
7w=pw - 0 ay w 

(at wall) (2.1) 

at the wall, and the consideration of the relations 
between them will prove very useful. 

The problem of heat transfer is never treated 
with all possible generality. In all cases con- 
sidered, (Fig. 2), the approaching stream is one 
of uniform velocity rf, and uniform temperature 
Tm. Hence, the free-stream temperature along 
the edge of the thermal boundary layer remains 
constant, and all the heat transferred from the 
surface to the stream remains within the thermal 
boundary layer, Under these circumstances the 
heat flux at the edge is no longer present and the 
only heat transported across the edge is carried 
by the fluid entrained into the growing velocity 
boundary layer. 

With respect to the wall temperature, it is 
possible to discern four typical problems. In the 
simplest problem, Fig. 2a, the surface tempera- 
ture Tw(x) remains constant, but often, Fig. 2b, 
actual conditions more nearly approximate a 
constant heat flux dw. In the most general case, 
Fig. 2c, the surface temperature Tw(x) is pre- 
scribed, but the special case, Fig. 2d, when it 
undergoes a discontinuous jump, is of impor- 
tance, because from its solution it is possible to 

l This is, of course, identical for a turbulent and a 
laminar boundary layer because in the layer immediately 
adjacent to the wall heat can only be transferred by 
molecular conduction. 
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FIG. 2. Geometries of the typical problems. 

construct solutions for arbitrary temperature 
distributions. 

The imposition of a temperature difference 
between the solid wall and the fluid flowing past 
it gives rise to two new effects. First, it creates a 
temperature field whose detailed appearance 
determines the local heat flux. Secondly, it 
affects the properties of the fluid, since they all 
depend on temperature. The changes in the 
properties due to variations in temperature, 
notably the changes in viscosity, modify the flow 
field which now becomes different from the 
corresponding isothermal field. Finally, the con- 
sideration of the new parameters associated 
with the temperature field brings into play 
additional properties of the fluid, notably its 
Prandtl number, and differences in the behavior 
of different fluids are strongly accentuated. 

The relation between the thicknesses of the 
two boundary layers, 6(x) and IT, is a quan- 
tity which is ultimately determined by the 
analysis. It is, however, useful to remember that 
this relation depends as much on the temperature 
and velocity distributions, e,(x) and U(x), as on 
the properties of the fluid, in particular on its 
Prandtl number, Pr. Of particular importance 

- 
- 
- 
7, = Conzt. 
,v, = Const 

FIG. 3. Thermal entry length. 

are problems involving a thermal entry length, 
Fig. 3, in which the thermal boundary layer 
develops from a definite point onwards, the 
velocity boundary layer being already fully 
established. In such cases, the wall temperature 
remains constant and equal to the free-stream 
temperature Tm over a certain length, changing 
its value suddenly beyond this length, thus 
initiating the growth of a thermal boundary 
layer which is at first much thinner than the 
velocity boundary layer. Other things being 
equal, the thermal boundary layer in a fluid of 
large Prandtl number, i.e. small conductivity, is 
much thinner than one in a fluid of small Prandtl 
number which corresponds to a large thermal 
conductivity. 

Independently of the details of any particular 
problem, it is easy to prove that the following 
integral equation must apply: 

It represents the energy balance for a transverse 
section of thickness dx, extending from y = 0 
to y = d, where d > 6 and d > 8T. For 
constant values of p and cp, the equation can be 
written 

a A 

ax 0 s ~(8,-B)dy=a(~)~(or=~). (2.3) 

Corresponding with the main interest in heat 
transfer, most experimental investigations have 
concentrated on the measurement of surface 
heat fluxes. Precise measurements of temperature 
profiles within a fluid have rarely been made, 
and then only in air, e.g. [8,9, 10, 11, 12, 13, 141. 
The inaccessibility of the laminar sublayer 
which most critically affects the gradient 
(a0/ay), at the wall makes it very difficult to 
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determine heat fluxes from the gradient of the 
temperature profile itself. The low accuracy, 
modest extent andlimited scope of these measure- 
ments has prevented them from becoming a 
starting point for an empirical theory of heat 
transfer. 

With very few exceptions [15, 10, 111, all 
available experimental results pertaining to the 
transfer of heat across turbulent incompressible, 
as opposed to compressible, streams, is confined 
to flows through pipes, but these results can 
often be used to verify theories of heat transfer 
to boundary layers, in the same way as is done 
in the study of skin friction. 

3. SURVEY OF THE THERMAL PROPERTIES OF 

FLUIDS 

Before writing down the fundamental 
equations of motion, continuity and energy, it is 
useful to examine the conditions under which it 
will be permissible to assume that the properties 
of the fluid are constant throughout the field. 
Since the implications of assuming a constant 
density are well known, and since compressibility 
effects are excluded from the present survey, 
it is permissible to assume that the density, p, 
remains constant, except in cases when even 
small changes in density caused by thermal 
expansion give rise to buoyancy forces in a 
gravitational field. These are the effects which 
lead to natural convection. The remaining 
properties of interest in heat transfer include: 
the absolute viscosity p, the kinematic viscosity, 
V, the thermal conductivity, k, the thermal 

diffusivity, a = k/pep, the Prandtl number, 
Pr, and the specific heat at constant pressure, cp. 
Representative values of these properties for 
gases and liquids have been listed in Tables 1 
and 2. Table 1 contains values measured 
relative to air, at 1 atm, whereas Table 2 lists 
the ratios of the respective quantities for a 
specified change in temperature, also at 1 atm, 
and thus give an idea of the rate of variation of 
each property over a relatively narrow tempera- 
ture range. It will be remembered that only the 
kinematic viscosity of gases is affected by 
pressure, all the other quantities being virtually 
insensitive to changes in it. 

The data in Table 1 demonstrate the extremely 
wide range of values encountered in heat transfer 
problems. The viscosity varies by a factor of 105, 
the kinematic viscosity varies by a factor of 
IO*, the thermal conductivity varies by a factor 
of 103, the range of Prandtl numbers is lo6 to 1 
and that of specific heats is IO2 to 1. It is impor- 
tant to note that the range of variation is much 
smaller among gases, particularly as regards the 
Prandtl number, than it is among liquids. It is 
clear that experimental data on heat transfer 
cannot be confined to gases only and must span 
a wide range of substances. 

The ratios listed in Table 2 show that the 
properties of liquids are very sensitive to 
temperature changes, much more so than those 
of gases. Thus the assumption of constant 
properties is more nearly justified in the case of 
gases, which are inherently compressible, than 
in the case of the inherently incompressible 

Table I. Range of variation of properties of fluids at 0°C and 1 atm (relative to air; Prandtl number absolute) 
_ e 

Gases: 
Air 
Hydrogen 
Helium 
Water vapor* 

Liquids: 
Water 
Oil lt 
Oil 2t 
Oil 3t 

Mercury 

co 

i.50 

1.1 
0.75 

110 
760 

2200 
47000 

100 

v0 k. a0 CPO 

1 1 1 1 
7.1 7.3 7.4 14 
8.0 6.3 0.86 5.2 
1.6 1.0 1.0 2.1 

0.14 23 0~0068 4.2 
1.1 6.0 0.0046 1.8 
2.7 5.2 0.0039 1.9 

66 6.0 OX)046 1.8 
0.0092 340 0.22 0.12 

Pr 
- 

0.72 
0.71 
0.70 
1.1 

14 
170 
480 

10000 
0.029 

t at 20°C. 
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Table 2. Variation of fluid properties with temperature. Ratio of property at 20°C to that at 100°C at 1 atm 
__-__ -.-- 

ll1oa “100 k 100 ~lclll CPlOO pr,,, - - xi - --- 
CL20 b!o ape G20 3,; 

Gases: 

Air 1.2 1.5 1.2 I.5 I.0 1.0 
Hydrogen 1.2 1.5 1.2 1.6 1.0 0.96 
Helium 1.2 1.5 1.1 I.4 I.0 1.0 
Water vapor* 1.3 1.7 1.4 1.9 0.90 0.87 

Liquids: 
Water 0.36 0.30 1.1 1.2 1.0 0.25 
Oil 1 0.22 0.16 0.97 0.88 1.2 0.19 
Oil 2 0.098 0.10 0.95 0.84 1.2 0.13 
Oil 3 0.021 O-025 0.94 0.85 1.2 0.026 
Mercury 0.82 0.81 1.2 1.3 1.0 0.56 

* Between 200°C and 100°C. 

liquids. Comparison between experiment and a 
theory in which the properties have been assumed 
constant is not always conclusive, and requires 
suitable means for determining the appropriate 
average values of the varying properties. 

It is useful to note that temperature differences 
which correspond to a given heat flux are smaller 
in turbulent than in laminar convection, and 
consequently, in practical problems the assump- 
tion of constant properties is more justified in 
turbulent than in laminar convection. 

Although the variation in specific heat is of 
the same order as that in thermal conductivity, 
it is usual to neglect it. 

4. FUNDAMENTAL ASSUMPTIONS. 
CENJ3RAL CONDITIONS OF SIMILARITY 

In convective heat transfer, as in fluid 
dynamics, it is now generally accepted that the 
entire behavior of the flow in all regions is 
implied in the Navier-Stokes equations, together 
with the equations of continuity and conservation 
of energy. In heat transfer the solution of the 
energy equation is the prime concern. 

Turbulent flow is conceived as developing 
from laminar flow by the growth of unstable 
disturbances which originate from the boundaries 
of the fluid. Even when everything is done to 
produce a steady flow, once turbulence is 
established the flow is inherently non-steady, 
and the local parameters fluctuate about their 
mean values. Therefore, even in the case of a 
flow in which the mean values are constant, the 

time derivative must be retained in the funda- 
mental equations. 

Conservation of momentum 

Du ap 
P -j,t = -a,+;x(4z)+;(~;) + 

where 

there being two similar equations for velocity 
components v and w. 

Conservation of mass 

(4.la) 

Conservation of energy 
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where 

@=2[(y+(g+(g)“]+ 

+ (g+g)“+($+g2 + 
au aw 2 

+ az+ax ( 1 
denotes the dissipation function. The only 
restrictions imposed upon these equations are 
that the density is constant, and that the enthalpy 
is independent of pressure. 

The full equations cannot be considered for 
further analysis in all their generality, owing to 
their complexity, and to our inability to postulate 
in them realistic, time-dependent boundary and 
initial conditions. However, two important 
observations can be made from them. First, 
the flow field depends upon the variation of 
viscosity with position, and therefore with 
temperature, so that in general the two fields are 
coupled. Secondly, the energy equation is 
similar to the x-component of the momentum 
equation, and it is possible that the temperature 
field can become similar to the velocity field 
under certain conditions. The terms which 
preclude strict similarity arise from the pressure 
gradient +/ax, from the dissipation function @ 
land from the fact that the viscosity p and the 
thermal conductivity k are described by different 
functions of temperature. 

If the further, and considerably restricting, 
assumption of constant properties is made, the 
continuity equation remain unaltered, whilst the 
equations for the conservation of momentum 
and of energy become 

DC 

--fit = 
-bgradp+ vVac (4.2a) 

(4.2b) 

From these equations it is clear that under the 
assumption of constant properties the velocity 
field becomes entirely independent of the tem- 
perature field. The flow field, being determined 
regardless of any heat transfer, can be studied 
independently. In the theory of heat transfer the 

velocity field is usually assumed to be identical 
with that which would exist in the absence of the 
actual temperature field, and it must not be 
forgotten that this involves a serious approxima- 
tion. 

On the other hand, with this simplification the 
velocity field u and the temperature fi:ld 0 can 
become similar when the pressure gradient +/ax 
and the dissipation funcion @ become small 
everywhere compared with the remaining terms. 
The former condition is satisfied on a flat plate 
at zero incidence and nearly so on cylinders of 
gentle curvature, whereas the latter condition is 
satisfied when the viscosity is not too large. 
More precisely, by performing a standard estima- 
tion of terms [16, p. 2961, it is easy to show that 
this is the case when the product of the Prandtl 
and Eckert numbers is very small, i.e. when 

Thus we compare the equations 

DU 
- = vV%4 

Dt 

D9 
- = aV9 
Dt 

and note that they will be similar when 

P+=l. 

(4.4b) 

(4.5) 

Their solutions will be similar if their corres- 
ponding boundary conditions are similar. Owing 
to the omission of the pressure gradient, strict 
similarity can only exist on a flat plate, when the 
velocity and temperature profiles are identical 
at some instant at some cross section, and when 
the temperature of the plate is constant. 

In spite of these drastic restrictions, the concept 
of similarity between the two fi:Ids plays an 
important part in heat transfer, but it is 
emphasized that no similarity can be expected 
to exist in problems involving thermal entry 
lengths. The preceding argument only estab- 
lished sufficient conditions for similarity. A 
systematic search for conditions which are both 
necessary and sufficient for similarity to exist 
does not seem to have been made. It must, 
however, be remembered that in steady-state 
problems no boundary conditions in time can be 
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fixed. This makes it necessary to investigate 
them separately, and to deduce them from 
observation, as will be explained more fully 
after equation (4.9b) and in Section 10. 

The impossibility of deriving turbulent flow 
patterns, and hence temperature fields, directly 
from the full equations is now clearly recog- 
nized, and it is fruitful to form time-averages of 
the fluctuating quantities in the conservation 
equations to develop a physical insight into the 
phenomena involved. Retaining the assumption 
of constant properties, it is further assumed that 
the independent variables in the equations can 
be represented, for a quasi-steady stream, as an 
average value (denoted by a superscript bar) and 
a fluctuating component (denoted by a prime), 
the time average of every fluctuating component 
converging to zero for large time intervals. Thus 

u=u+u’; J=O 

p =B -tp’; +0 

e=e+e’; e’ = 0, etc. (4.6) 

It can be seen that the additional terms in the 
energy equation 

&G), $7), L(m), (4.7) 

having their counterparts in the components of 
the turbulent stress tensor 

must be subtracted from the right-hand side of 
(4.2b). These terms can be interpreted as giving 
rise to “apparent” components which are 
additive to the convective components 

ti(B/&), etc. 

Hence, for quasi-steady turbulent flow, the 
equations for the x-component of the mean 
velocity and the temperature field become 

-- ;g+(g+$2+g, (4.9a) 

(4.9bj 

A further condition of similarity of velocity and 
temperature fields under these circumstances is 
that the spectrum and phase of the fluctuation 
in U’ should be similar to that in 8’. This condition 
cannot be imposed on the flow and it is necessary 
to establish by observation whether this is 
actually the case. So far, this has not been done. 

The averaging process performed in the 
Navier-Stokes equations and in the energy 
equation has not received a precise mathematical 
justification, and though it appears that the 
resulting equations are adequate for the analysis 
of many problems, it must be conceded that 
they suppress the dependence of the fluctuating 
components on their spectral characteristics, 
and contain so many heuristic approximations 
that they can only be regarded as useful working 
hypotheses, to be confirmed or refuted for 
specific circumstances by constant comparison 
with experiment. 

Much effort has been spent measuring velocity 
fluctuations in isothermal boundary layers, but 
no systematic measurements have been reported 
of velocity fluctuations in non-isothermal 
streams, particularly in streams whose Prandtl 
number differs appreciably from unity, or of 
temperature fluctuations in boundary layers, 
except [13]. In this, Johnson described measure- 
ments of velocity and temperature fluctuations 
in a turbulent boundary layer downstream of a 
stepwise discontinuity in wall temperature. 
He found that the (instantaneous) surface of 
demarkation between unheated and heated 
fluid was sharp and distinct even within the fully 
turbulent portion of the momentum boundary 
layer, so that a probe held in a fixed position 
within the layer gave intermittent signals of 
temperature fluctuations. Johnson also found 
that the local turbulent Prandtl number (S?ction 
9) was not constant across the boundary layer. 

Experiments of the type involve a very con- 
siderable amount of work, and no measurements 
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extending Johnson’s investigations have been 
reported. 

5. BOUNDARY LAYER SIMPLIFICATIONS 

The usual boundary layer approximations can 
be introduced into the principal equations in 
either of two ways. First, it is possible to start 
with the averaged equations, and, by estimating 
terms, to delete those of small order; secondly, it 
is possible to perform the averaging process in 
Prandtl’s boundary layer equations directly. 
In both cases, it is impossible to complete a 
rigorous mathematical derivation owing to the 
deficiencies in our knowledge of temperat~e 
fluctuations. Since the main equations can only 
be treated as working hypotheses, the same 
applies a fortiori to the averaged boundary 
layer equations. 

Bearing these details in mind, we shall simply 
insert into the usual two-dimensional boundary 
layer equations [16] the x-components of the 
apparent stresses and fluxes, and write: 

Conservation of momentum 

where 
afi 

‘l=P&$ 

and 
‘i-6 = - p(u’u’}. (5.lb) 

In this form the equation takes account of the 
variation of viscosity with temperature. A more 
detailed estimation of terms would show that 
this is true on the assumption that 

(SSC) 

where L is a characteristic dimension of the body, 
6 is the boundary layer thickness, and Ap denotes 
the maximum difference in the viscosity of the 
fluid across the boundary layer, In general, this 
condition will be satisfied. 

Conservation of mass 

(5.2) 

Co~ervut~on of energy 

where 

&=k$ 

and 

The above form of the energy equation takes 
into account the dependence of thermal con- 
ductivity on temperature. 

It is noted that in these, as in the general 
equations, the Reynolds stresses and fluxes 
it and 46 are additive to the co~esponding 
molecular terms 7~ and tjz and that the energy 
equation is linear. 

In the analysis of actual problems, it is not 
usual to retain the fluctuating terms explicitly 
in the equation, because no attempts are made 
to evaluate the ~uctuating components and their 
correlations directly. Instead, following Bous- 
sinesq [17], their effect is represented by terms 
which are given the same appearance as the 
corresponding viscous and heat conduction 
terms. Thus, to the molecular viscosity p there 
will correspond a coefficient of “eddy” viscosity 
~8, their sum being equal to the “effective” 
viscosity pe. Consequently, the shearing stress 
can be written 

_ 

T = (P + t-4 g; 

aii 
=Cle ay’ 0 (5.4a) 

In an analogous manner, the heat flux can be 
written 

tj = (k + kt) ;; 

(5.4b) 
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kt and kc denoting the turbulent and effective 
thermal conductivities, respectively.* 

The eddy coefficients, being defined in terms 
of the oscillating components in the flow and 
temperature fields, are not properties of the 
fluid, like p and k. Their values are generally 
many magnitudes greater than the molecular 
transport coefficients. The importance of their 
use lies in the circumstance that the most effective, 
heuristic theories of turbulent flow and heat 
transfer concentrate on making assumptions 
about them, particularly about the dimensionless 
ratio 

pr t = 2 _ ptCp 
at kt 

ww 
known as the turbulent Prandtl number. We 
shall also have occasion to use the ratio 

& = !! = P = 1 + F”_t 
V P IL 

(5.5a) 

which has the character of a dimensionless 
effective viscosity, as well as the effective 
Prandtl number 

(5.5b) 

In dealing with the energy equation, it is 
sometimes useful to recall that it can be cast in a 
more compact form by applying to it the von 
Mises transformation [18, 19, 161. In this form, 
the equation is identical with the onedimen- 
sional Fourier heat-conduction equation in 
which the conductivity is a function of the space 
co-ordinate. 

6. THE FLOW FIELD 

Even though the velocity boundary layer 
thickness S is very small, it is necessary to 

distinguish in it several zones in order to 
facilitate the analytic description of the flow 
field. In reality, of course, these zones are not 
sharply delineated but merge continuously into 
one another. 

(a) The layer immediately adjacent to the 
wall or the laminar sublayer, now more frequently 
called the viscous layer. In it, the motion is 
dominated by the effects of molecular viscosity 
and Tt < rl or pt < ~1. The velocity variation is 
very closely linear with distance 17 = py which 
implies a constant shearing stress; the extent 
SE of the zone is exceedingly small, varying from 
SZ = 0.026 to 0~0000% for a range of Reynolds 
numbers Rez = (7x/v = IO5 to log. The laminar 
sublayer is very thin but plays an important 
part in heat transfer, particularly at high Prandtl 
numbers and along thermal entry lengths when 
the thermal boundary layer is also thin, because 
then the major part of the temperature change 
takes place in it. 

(b) The next layer called the fully turbulent, 
or constant stress layer is also characterized by 
a constant shearing stress. The flow is here 
dominated by turbulent mixing, and 

71 < 7t or CL < pt. (6.1) 

Extensive experimental evidence indicates that 
the velocity distribution in this layer is of the 
universal form 

u+ =f(v+) (6.2) 
where 

li+ = ii/v* 
y+ = yv,.v > 

(6.3) 

are the usual dimensionless parameters formed 
with the friction velocity 

J 720 
V *= -5 

P 
(6.3a) 

* The reader may have noticed that the above symbols 
depart somewhat from those normally encountered in 
papers on heat transfer where only the quantities vt and 
~lt are give separate designations. The present convention 
which uses the same symbols for eddy coefficients as 
those for the corresponding molecular quantities, making 
distinctions with the aid of suitable subscripts, is more 
flexible and leads to more symmetrical and typographic- 
ally simpler expressions. 

there being available several empirical expres- 
sions for the functionfin (6.2). This is the region 
of Coles’ [20] “law of the wall” which extends to 
a limit variously indicated as 

s,+ = 400 to 1000 

t This is the inverse of the ratio &/At favored in the 
German literature of the subject [16]. 

and occupies a thickness St = S to 0.01 S in the 
interval of Rez = lo5 to lo9 on a flat plate. 
At the lower Reynolds numbers this region 
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nearly Blls the boundary layer, except for the 
laminar sublayer. It is remarkable, and important 
for heat transfer calculations, that the same 
expression (6.2) seems to be valid in the presence 
of pressure gradients and outside rough walls. 
It cannot be said, either of this layer, or of the 
Iaminar sublayer, that the shearing stress 
remains strictly constant, as is easy to see with 
reference to the general equation (5.1). Rather, 
it is asserted that the variation of shearing 
stress across the narrow zones is small, and can 
be replaced by a constant value equal to that at 
the wall. 

(c) The outermost, wake-like region (also 
fully turbulent) extends from y = St to y = 6, 
and occupies a progressively larger proportion 
of the boundary layer as it flows along a wall. 
It is practically non-existent at moderate 
Reynolds numbers, but at high Reynolds 
numbers it occupies 0.8 to O-9 of the extent of 
the whole turbulent boundary layer. The 
velocity distribution in this region is sensitive 
to the pressure gradient and can no longer be 
described in terms of the form of (6.2), since it 
must contain a parameter, say n(x), which 
characterizes the pressure gradient. Coles [21] 
succeeded in formulating the equation 

u+= A In y+ + B + ALf(x)p(y/S) (6.4) 

which contains a new universal function, the 
“law of the wake”, p(y/S). 

The importance of the wake region in heat 
transfer calculations has not been examined, and 
its existence has so far been ignored. Since all 
present theories of heat transfer confine them- 
selves to the consideration of the laminar 
sublayer and the fully developed, constant- 
shear layer, and since the wake region occupies 
a progressively larger portion of the turbulent 
boundary layer (but not of a turbulent core in a 
pipe) as the Reynolds number increases, it 
would appear that the validity of these theories, 
when applied to boundary layers (but not to 
pipes), is restricted to the lower end of the scale 
of Reynolds numbers, the restriction being more 
severe in the case of low than in the case of high 
F’randtl numbers. 

(d) The original sharp subdivision into a 
laminar sublayer and a turbulent layer has 
proved inadequate in heat transfer studies and 

it became necessary to distinguish a “transition 
zone”, or a “buffer layer” extending from 
y = 61 to y = &,, say, in which the molecular 
and the eddy coefficients to and pt are of equal 
importance and comparable magnitude. Experi- 
ment indicates that the velocity profile in this 
region is also described by a universal law of 
the form of (6.2), being again one independent 
of pressure gradients, but different in detail. 

When the universal parameters u+ and y+ 
are used, it is easy to lose sight of the relative 
proportions of the various zones to the actual 
boundary layer thickness. In order to gain some 
insight, it is useful to derive an approximate 
equation for the ratios &/6, 6616 and &/6 in 
terms of the dimensionless co-ordinates, S;t, 
8,f and S;t and Reynolds number. This can 
be done by utilizing the available explicit 
formulae for the boundary layer thickness and 
for the skin friction coefficient for a flat plate 
derived from the 1/7th power law. By simple 
calculation it can then be shown that 

Y 
s m&y+; (R, = F). (6.5) 

The universal limits S;i- = 5, S:- = 30, 
S,+ = 1000, are normally accepted as reasonable 
values for heat transfer calculations. The ratios 
6r/6 etc. have been expressed in terms of the 
length Reynolds number Rel: and are seen 
plotted in the logarithmic diagram of Fig. 4. 

Y/b 

FIG. 4. Extent of the different zones in terms of the 
length Reynolds number. 
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The diagram illustrates how the various layers 
decrease in extent in relation to the boundary 
layer thickness, and how the wake-like region 
penetrates further into it with increase of the 
length Reynolds number. 

Table 3. values of the ratios &/6, &/6, and at/6 for various 
kn@h Reynolds numbers on a flat plate (1/7th power law) 
which correspond to 6’. = 5, 6+ := 30, and 6+ = 1000 
~=-zx ~~_ ~_ ._______ - 

Laminar Buffer 
sublayer layer Law of the wall 

Kc, 6116 sb/s 6116 
.___. 

10’ 0.025 0.152 - 
IO’ 0,005 0.030 lG)O 
10’ 0.001 0,006 0.201 
10’ oWO2 0.001 0,040 
IO’ 00xlO4 0~0002 0.008 

7. THE LAMINAR SUBLAYER 

There seems to be a certain amount of con- 
fusion, or controversy, regarding the nature, 
and even the existence, of the laminar sublayer 

D. RICHARDSON 

[22, 23, 241 and it is felt necessary at least to 
clarify the authors’ views. Since this layer is 
normally inaccessible to direct measurement, 
much of what is said about it is inevitably 
conjectural. 

For a long time it was held that the velocities 
in the laminar sublayer do not fluctuate, and 
that in it laminae of fluid glide over each other. 
the particles moving steadily along their stream- 
lines in the manner postulated in the mathema- 
tical analysis of laminar boundary layers. It was, 
therefore, found surprising and disturbing that 
Klebanoff [25] and Laufer [26] were able to 
detect fluctuations in it. It is true that the root- 
mean-squares of all three fluctuating components 
(~‘~)i, (z)‘~)” and (w’~)* decay to zero at the wall 
itself (as they must, owing to the no-slip con- 
dition), but the ratio of the root-mean-squares 
of the longitudinal component U’ to the local 
average velocity c increases across the sublayer 
and reaches its highest value at the wall. The 
results of Klebanoff’s measurements have been 
reproduced in Fig. 5; Laufer’s measurements 

FIG. 5. Measurement of turbulent velocity fluctuations across a turbulent boundary layer on a plate, 
after Klebanoff [25]. 
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FIG. 6. Measurement of turbulent velocity fluctuations in a pipe, after Laufer [26]. 

in pipes present an identical pattern, Fig. 6. 
The measurements are further confirmed when 
the so-called intermittency factor y is plotted 
near the wall, as shown in Fig. 7 which repre- 
sents the same measurements performed by 
Klebanoff, as well as the results obtained by 
Corrsin and Kistler [27]. 

The preceding results prove conclusively 
that the laminar sublayer velocity profile is an 
oscillating one, and make it difficult to reconcile 
with the usual pattern associated with a steady 
laminar boundary layer. The authors represent 
the view that these features admit of an alter- 
native, consistent interpretation. 

Recent experimental work on the transfer of 
heat across laminar boundary layers in the 
presence of a turbulent free stream performed at 
Brown University [28, 29, 30, 31, see also 161 
indicate that for this (quite normal) condition 
the velocity profile in a laminar boundary 
layer carries fluctuations of this type. 

At the edge of such a laminar boundary layer 
the free stream velocity oscillates. as does the 

velocity adjoining the laminar sublayer of a 
turbulent flow. For both cases it is to be expected 
that the velocity profile has a corresponding 
oscillation. Now, it is well known [16] that such 

I 
I 

0 02 04 0.6 0.0 I.0 l-2 14 

Y/8 

FIG. 7. Variation of intermittency factor y across 
a turbulent boundary layer, after Klebanoff [25] and 

Corrsin and Kistler [27]. 
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oscillations in the free stream are transmitted 
across a laminar layer by the action of shear, 
and that the relative amplitude of a harmonic 
oscillation, for example, increases in the direction 
of the wall, in qualitative agreement with the 
results in Figs. 5, 6 and 7. In a laminar boundary 
layer such disturbances can become amplified, 
as is proved in the Tollmien-Schlichting theory 
of stability, and lead eventually to transition. 

By its very existence, it is clear that the laminar 
sublayer is stable though unsteady. The velocity 
profile in it is very nearly linear, and it can 
sustain the random disturbances imposed upon 
it by the adjacent turbulent layers without 
permitting them to amplify. An oscillating 
laminar layer or sublayer is distinguished from 
a turbulent layer in that the latter carries eddies 
resulting from upstream instabilities which have 
promoted transition. The magnitude of the 
resulting motions makes turbulent exchange the 
dominating mechanism for momentum transfer 
in a turbulent stream. By contrast, the dominating 
mechanism in a laminar layer or sublayer is the 
propagation of shear by molecular viscosity, 
irrespective of whether this is associated with a 
steady or an oscillating velocity profile. 

The longitudinal oscillations may even give 
rise to a secondary flow, and this may be respon- 
sible for the curious transverse motions observed 
by Fage and Townsend [32] which prompted 
Dankwerts [22] and Hanratty [24] to formulate 
the theory of a detaching and re-attaching 
sublayer. 

If these interpretations are accepted, the 
contradiction disappears, and the new term 
“viscous layer” coined for such an oscillating 
laminar sublayer appears confusing and super- 
fluous. Incidentally, in the light of these remarks, 
the appropriateness of using the intermittency 
factor y as an indicator of the flow regime may 
be questioned. 

Sternberg [33] has recently discussed the 
sublayer from a complementary viewpoint. 
On assuming that the mean flow in the sublayer 
and the turbulent field in the neighboring part 
of the boundary layer are known from experi- 
ment, Stcrnberg showed that the turbulent 
vz locity fluctuations are directly dissipated by 
viscosity in the sublayer, and that the production 
of turbulent energy attains a maximum in a 

region where the laminar and turbulent shearing 
stresses are equal. 

8. THE LAW OF THE WALL 

In addition to Prandtl’s and Taylor’s semi- 
empirical expression for the law of the wall, 
namely 

u+==Alny++B, (8.1) 

commonly employed to describe the universal 
velocity profile in the turbulent layer, it was felt 
necessary to develop alternative formulations 
for further use in heat transfer calculations. In 
these formulations, which will now be reviewed, 
it is admitted that the corresponding equation 
for the laminar sublayer should be 

u+ =yi (8.2) 

and the main motivation for the alternative 
formulae was the desire to provide a smooth 
rather than an abrupt transition from one expres- 
sion to the other, in conformity with experi- 
mental results, but also with a view to simplifying 
the ensuing derivations. 

Thus, for example, von K&man [34] intro- 
duced a distinct buffer layer, postulating in it a 
relation of the form of (8.1) with, however, 
different values for the empirical coefficients 
A and B. A representative list of formulae 
proposed by different authors is given in 
Table 4. The diagram in Fig. 8 shows a com- 
parison between experimental data and equations 
(8.1) with (8.2). The values for the constants 
are those recommended by Coles [20], namely 

A =2.5; B=5.1. (8.3) 

The diagram clearly shows the need for smooth- 
ing out the transition between these two 
equations. 

An expression which encompasses the law of 
the wall in one equation was suggested by 
van Driest [35].* Its principal interest lies in the 
fact that good agreement with experiment has 
been achieved with the aid of considerations 
regarding the laminar sublayer which are 
essentially identical with those advanced in 
Section 7. It arises by the application of a 

l The first equation of this type is due to Reichardt 
[431. 
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FIG. 8. Comparison of the law of the wall with experiment [15, 16, 25, 35-421. 

damping factor, [l - exp (--y/A)] where A is T 
a constant, to the term u)u), the damping factor 

- = i;; + Py+s[l - exp (--y+/A+)la (;I:)‘, 
7W 

being “borrowed” from Stokes’ well-known 
solution for the viscous decay of oscillations (g.5) 

above a flat plate. These assumptions lead to the which is equivalent to the statement that the 
following expression for the shearing stress eddy viscosity is given by 

T = p (z;) + p~~y~[l - exp (-_y141a (z;)*, 
(8.4) 

dy+ c+ = 1 + v”” = I. dui 

P TW 
(8.6) 

where K is another constant. This relation can Here the sign of ordinary differentiation can 
be reduced to the universal form be used, since u+ is uniquely related to y+. 
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(8.7) 

leads to van Driest’s law of the wall. Strictly 
speaking, the assumption (8.7) implies a number 
of restrictions which will be examined in greater 
detail in Section 12. It is, however, noteworthy 
that the resulting law of the wall seems to 
reproduce experimental results obtained under 
conditions when the former are not satisfied, 
and it might be conjectured that the corres- 
ponding expression 

Ef = y; (8.8) 

enjoys wider validity than is implied in this 
derivation. 

The most recently proposed expression, due 
to Spalding [45], also succeeds in providing a 
single analytically smooth expression for all 
three layers. This has been achieved by inverting 
the relation and by writing it in the form 
y+(u+). Since the equation was proposed very 
recently, the best values for the coefficients 
A and B are somewhat in doubt. The form of the 
the equation shows that y+ j u+ for u+ 3 0 and 
that near the wall the effective, dimensionless 
kinematic viscosity, (8.6), 

E.‘- = 1 + AB[+‘+ - 1 - Bu” - ;(Bu+)~] 

(8.9) 

increases with y+ as 1 + (y+)“, in agreement 
with Reichardt [46, 471.” The equivalent 
expression gives E.+ increasing as 1 + (y+)“. 

The diagram in Fig. 9 shows a comparison 
between the different laws of the wall listed in 
Table 4 and reveals that the discrepancies 
between them are of the same order of magnitude 
as the scatter in the experimental data in Fig. 8. 
There seem to be, therefore, no physical grounds 
for discriminating between the various proposals 
and the final choice can be made on grounds of 
convenience. This undoubtedly favours Spal- 
ding’s formulation. It is sometimes stated that 
more precise measurements would remedy this 
deficiency, but the alternative view that a 
universal law is only approximate cannot be 

* See also Townsend [48] p. 220, Elrod, Jr. 1491, and 
Hinze [50]. 

dismissed. It is plausible that minor, un- 
accounted influences are responsible for these 
deviations. 

For our purposes, it is necessary to record 
here that the universal ‘law of the wall, in any 
of the forms listed in Table 4, seems to describe 
the conditions in the fully developed layer 
adequately, and irrespectively of the value of the 
pressure gradient. It can even be extended to 
compressible flows [51, p. 5461. Nevertheless, it 
is important to bear in mind that its validity has 
been established essentially in connection with 
isothermal streams, and thus it is not known 
positively whether a highly variable viscosity 
in the presence of a thermal field would affect 
the law of the wall. 

The logarithmic law of the wall, together with 
the proportionality relation U+ = y+ for the 
laminar sublayer, or the alternative analytic 
formulations listed in Table 4, do not lead to a 
direct, explicit representation of the average 
velocity profile II in terms of the co-ordinates 
x and y. They should be regarded as formulations 
which remove the need for making explicit 
assumptions for the eddy or effective viscosity 
in (5.4). The actual velocity profiles, and the 
shearing stress distribution for any given body 
shape, must be obtained by an integration of 
(5.1). This, however, has not yet been performed, 
but limited success was achieved by the use of 
its integral form 

(8.10) 

where 6, is the momentum thickness, u(x) is the 
free-stream velocity, and rW is the shearing stress 
at the wall. The form parameter H is defined as 

Hz; 
2 

(8.11) 

where S, is the displacement thickness. Even 
this equation has been solved for a limited 
number of cases only, among which solutions 
for those forms of the law of the wall which are 
most useful in heat transfer are not included, 
This is a task which still remains to be done, 
particularly in relation to Spalding’s equation 
(8. IO). 

There is one final aspect of the flow in a 
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turbulent boundary layer which is worthy of 
attention. Since the mean flow in the boundary 
layer satisfies the continuity equation (4.Ia), it 
is interesting to consider the stream function 
(U = &,G/ay, v = --+/lax) which is given by 
$=,i” u dy, the integration being performed 

= constant. Introducing the similarity 
variables a+ and yf from (6.3) and (6.3a), it is 
easy to see that 1/, = Y jr U+ dyf. Thus it 
follows that in the laminar sublayer and in the 
fully turbulent layer, including the buffer layer, 
the stream function # is uniquely related to 
yf, and so, in view of the similarity relation (6.2) 
also to u+; in other words, lines of constant U+ 
and 4 are identical, and there exists a relation 
#(a+) = 1;’ u+ (dy+/du+) du’. 

This fact implies that the rate of flow through 
the laminar sublayer which extends from 
y+ = 0, (u+ = 0) to y+ = 5, (u+ = 5) is con- 
stant. The same would appear to be true regar- 
ding the buffer layer (5 < y+ < 30), but not of 
the fully developed turbulent layer whose edge 
does not coincide with a fixed value of y+. 
Hence, the laminar sublayer, apart from 
appearing to be stable with respect to distur- 
bances, also passes a fixed volume or mass rate 
of flow (p = constant), presumably determined 
during the process of transition. The volume 
rate of flow through the sublayer is then 
# = 12.5~ per unit width, and the rate of flow 
through the buffer layer is about J, = 440~. 

9. EDDY CONDUCTIVITY AND TURBULENT 
PRANDTL NUMBER 

In view of the difbculties attendant upon the 
solution of the equation of motion (5.1) it might 
appear that any progress with the energy 
equation (5.3) or (5.6) will be impeded by the 
lack of knowledge of the velocity profile Z&C, y). 
This, however, is not the case, and the theory 
of heat transfer can nevertheless be pursued, 
because sufficient information is available in the 
universal law of the wall. The only quantity 
which remains to be discussed, before this 
final problem can be attacked, is the eddy 
conductivity. 

The simplest approach is to make a plausible 
assumption, and this usuafly takes the form of 
an assumption concerning the turbulent Prandtl 

number Prt. The first statement of this type 
was made by Reynolds [3] who reached the 
conclusion that 

Prt = 1 (9-l) 

on the basis of a heuristic argument during 
which he noted that in a fully turbulent geld, 
both momentum and heat are transferred as a 
result of the motion of eddies. Details of this 
argument can be found in [42,52]. The soundness 
of the preceding, exceedingly simple assumption 
has been questioned by many research workers, 
and numerous attempts have been made to 
obtain direct experimental evidence about 
it [X, 12, 53, 541. At the present time, no unified 
and consistent picture emerges. In particular, it 
is not clear whether the turbulent Prandtl 
number is completely independent of the mole- 
cular Prandtl number, as implied in assumption 
(9.1) and in many other theories. We now propose 
to give a brief account of these conflicting 
investigations, beginning with that due to 
Ludwieg [53], because it bears an aura of 
credibility, and provides a link to Taylor’s 
[55, 161 vorticity transport theory. Measure- 
ments presently available are for turbulent heat 
transfer in gases, for which the molecular 
Prandtl number is close to unity. Whilst gases 
are generally more convenient experimentally 
than liquids, their use necessitates care if the 
small variations of apparent Prandtl number 
are to be ctearly distinguishable from experi- 
mental uncertainties. This is especially important 
when evaluation of results involves differentia- 
tion of experimentally determined profiles. 

Ludwieg 1531 measured the variation with 
radius of the turbulent Prandtl number for air 
flowing in a pipe, as illustrated in Fig. 10. These 
measurements indicate that the turbulent Prandtl 
number varies smoothly and continuously from 
a value of about O-7 near the pipe wall to a 
value approaching 0.5 at the centre of the pipe. 
Flow at the centre of a pipe does not include 
regions of wake flow, such as occur in boundary 
layers beyond the law-of-the-wall region. How- 
ever, an extrapolation of Ludwieg’s results on 
the basis of the reciprocal of distance from the 
wall shows that his measured values are 
asymptotic to a turbulent Prandtl number of 
O-5 at large distances from the wall, where the 



166 J. KESTIN and P. D. RICHARDSON 

FIG. IO. Variation of turbulent Prandtl number PQ 
with distance from wall, after Ludwieg [53]. 

law of the wake would apply. This is in agree- 
ment with the value of O-5 measured in the wake 
of a cylinder by Fage and Faulkner [56, 161, 
and by Reichardt in a free jet [43]. The value of 
O-5 is also indicated by Taylor’s vorticity 
transport theory, and this gives support to the 
correctness of the values measured, and to 
the trend with position relative to the wall of 
Ludwieg’s results. 

Unfortunately the results of the remaining 
measurements do not agree with those of 
Ludwieg, nor between themselves. These results, 
together with those of Ludwieg, are shown 
in Fig. 11. From the diagram it can be seen that 
most measurements have trends opposite to 
Ludwieg’s, and there is great disagreement 
between them. It may be remarked that the 
uncertainties involved in the experiments are 
difficult to overcome, and it has been pointed 
out [57] that there is a distinct lack of agreement 
between local measurements and overall surface- 

by one based on consideration of the Lagrangian 
description of eddy motion. Others [59, 60, 611 
have suggested various forms of variation; that 
due to Jenkins [59] has been compared with 
experiment but no distinct confirmation of any 
analysis appears to have been found. It is 
therefore clear that the question of the turbulent 
Prandtl number is still wide open, and merits 
investigation not only for air but also for fluids 
of a wide range of molecular Prandtl number. 
In this paper we shall assume that Ludwieg’s 
results are closest to being correct, for the 
(admittedly insufficient) reason that they corres- 
pond best with gross characteristics as already 
discussed. It might be pertinent to remark that 
all existing theories of heat transfer either 
assume Prt = 1 or an average, but constant 
value, say Prt = O-78. This has not prevented 
them from giving results which are acceptably 
close for most purposes. 

10. THE REYNOLDS ANALOGY 

Before proceeding with an account of the 
established relations for the rates of heat 
transfer in turbulent flow it is useful to derive a 
general relation between the shearing stress at 
the wall, rW, and the heat flux at the wall, &,, 
known under the name of the Reynolds analogy. 
It was first derived by Reynolds [62, 42, 521 by 
applying a somewhat different line of reasoning 
from the one given here. In this section we shall 
show that the analogy is a direct consequence of 
the general principle of similarity for the 
Navier-Stokes equations, discussed in Section 4. 
In the case of a flat plate at zero incidence and 
for fluids whose Prandtl number is equal to 
unity, the equations for the u-component of 
velocity and for the temperature difference 19 
become similar, provided that u and 0 obey 
similar boundary conditions in X, y, and time. 
In the case of a uniform mean wall temperature 
?‘,, of uniform mean velocity Dm, and of a 
uniform mean temperature difference Boo, com- 
plete similarity can exist if, in addition, 

flux measurements. 
There have been several attempts to provide au/at = ad/at and aelat = ae’lat (10.1) 

analyses of the variation of turbulent Prandtl are similar. This latter condition is plausible 
number, some proposing that the ratio of the for a boundary layer, but, of course, it is in 
eddy diffusivities must be unity, e.g. [58] who need of direct experimental verification. If this 
reinforced the original argument due to Reynolds is the case, then the mean, normalized profiles 
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l%. Il. Variation of turbulent Prandtl number Pt; with distance from wall. Comparison of different results. 

(a) Ludwieg [SS) - Corcoran et ai. [8] - - - - 
Sleicher 1541- . - + - . 1. Rc = 52500 

A. Re-= -14500 2. Rc = 17100 
B. Re - 24000 3. Re - 37300 
C. Re = 38500 4. Re s 8980 
D. Re = 80300 5. Re = 9370 

(b) Isakoff and Drew [12]. 

G/OcD and B/E%, must become identical functions 
of the transverse co-ordinate y at every cross 
section x, since both satisfy the boundary 
conditions 

which is a form of the Reynolds analogy. It is 
usual to re-arrange this relation by introducing 
the local skin friction coefficient 

_ 
-.- = - ia 8t=laty=c0 

B 

&=g 
= 0 at y = 0. 

Since 

and 

it follows that 
Tw ow 

&ii, = k&, 
- - (all x) (10.3) 

Cf = cuz 
and the local Stanton number 

(10.4) 

. 
St = Eyr -_ -4: -.-, 

pCpU&J 
(10.5) 

when (10.3) assumes the very simple form 

St = 6c/. (10.6) 

The strict validity of (I 0.6) is seen to be very 
limited, but it appears that it applies. approxi- 
mately, for other than the above sets of con- 
ditions, Its appeal lies in its simplicity and its 
recurring utility in circumstances where it does 
strictly apply, so that it has developed something 
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of a reputation as a panacea, and attempts have 
been made to extend it by the application of 
various forms of plausible reasoning [63, 64, 65, 
42, 34, 57,44, 661. On occasion it has been used 
rather recklessly, and applied under conditions 
when it could not possibly be correct. In this 
connection the survey paper by Sherwood [67] 
is worthy of mention. 

11. MATHEMATICAL FORMULATION OF 
PROBLEM 

In principle, and subject to the various 
reservations and simplifications expressed earlier, 
the temperature field is determined by the energy 
equation (5.3) and the boundary conditions of 
each problem. The velocity components u and u 
are implied in the equation of motion (5.1) in 
which the (experimental) universal law of the 
wall provides the expression for the eddy 
viscosity pt in (5.4), and the eddy conductivity, 
kt, in (5.4a), is in turn determined by the tur- 
bulent Prandtl number, Prt, discussed in Section 
10. Thus all the information required for the 
integration of the energy equation is available, 
if incompletely. Consequently, within the limita- 
tions outlined earlier, the problem of heat 
transfer across turbulent layers has been 
reduced to mathematical terms. The method of 
solving it in those terms has been provided by 
Spalding [l], and will be discussed in Section 14. 

The present practice in heat transfer calcula- 
tions is still confined to the more elementary 
methods and it is necessary to precede our 
account of the exact theory with a review of the 
procedures in which some of the mathematical 
steps outlined above are replaced by hypotheses 
of a physical nature. 

12. ELEMENTARY THEORIES OF TURBULENT 
CONVECTION 

All elementary theories of turbulent convec- 
tion take as their starting point the Boussinesq 
expressions for shear stress, equation (5.4) and 
for heat flux, equation (5.4a) and concentrate 
their efforts on the consideration of the ratio 
r/i, in a manner suggested by the Reynolds 
analogy (10.3). The two quantities are linked 
analytically in that the thermal conductivity k 
as well as the eddy conductivity kt are expressed 
in terms of the appropriate Prandtl numbers. 

Thus (5.4) and (5.4a) can be re-written as follows: 

(12.1) 

Instead of substituting these expressions into 
the equations of energy and motion, as outlined 
in the preceding section, the assumption is 
made that the ratio T/G at any given value of x‘ 
remains constant in the transverse direction _r. 
This hypothesis removes the need to make any 
further reference to the partial differential 
equations, and it becomes necessary to investi- 
gate the implications of such a sweeping assump- 
tion. 

Referring to (5.1) and (5.3), it is apparent 
that the shearing stress T and the heat flux 4 
can be expressed in the form of integrals with 
respect to y : 

dy (12.3) 

(12.4) 

The basic assumption also implies that 

7 Tw 
-*Z_ r constant 
4 qw 

(at x = constant and any v) (12.5) 

so that 

7 - 711, 
~~ = constant, 

i - qlu 

and constancy of this ratio would demand that 
the two functions of x and y resulting from the 
integrations on the right-hand sides of (12.3) 
and (12.4) must at most differ by a constant 
factor of proportionality. This would occur if the 
temperature and velocity fields 0(x, v) and 
8(x, y) became similar and if no pressure 
gradient were present. Excluding very special 
combinations of parameters, this would occur 
under the same restrictions for which the 
Reynolds analogy remains valid, Section 10. 
It follows that the ratio T/Q cannot remain 
constant across the boundary layer exactly 
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except in very special circumstances. Neverthe- 
less, the preceding assumption has led to very 
useful formulae, and this suggests that it is 
satisfied with a sufficient degree of accuracy. Such 
conditions exist when the rate of variation in 
velocity and temperature in the flow direction is 
several orders of magnitude smaller than that 
in the transverse direction. Consequently, the 
theories based on assumption (12.5) are likely 
to succeed for fully developed flows in pipes or 
channels, or for boundary layer flows with small 
pressure gradients. 

Under such conditions 

aii 
-M 0 hence !$ w 0 ax and ti M 0 (12Sa) 

so that with 

2 m 0 
dx 

(12Sb) 

the integrands in (12.3) and (12.4) become small, 
can be repIaced by average values, and the 
ratio ~14 becomes nearly independent of y. In 
particular, when the ratio of 7&w is examined, 
it is convenient to consider their values in terms 
of the energy integral equation (2.3) and the 
usual momentum integral equations 

(12.6) 

in order to reahze that T/& can remain strictIy 
constant, and independent of X, only under very 
special circumstances. 

ft is clear that a theory based on this assump- 
tion will lead to an expression of the heat ffux 
&, at the wall in terms of the shearing stress 
TV, and can, therefore, be described as an 
“analogy”. Often, theories of this class are 
described as extensions of the Reynolds analogy, 
because the variation of QW with x becomes 
“analogous” to that of TV, as was postulated in 
the first place, (12.5). 

It can be verified immediately that for 
Pr = Prt = i, assumption (12.5) leads directly 
to the conchrsion that 

Z/Q 
acrlaj = constant, (at any y for x = constant) 

as seen from (12.1) and (12.2). Thus, the simple 
theory will be consistent with the existence of 
Reynolds’ analogy in this special case. A 
comparison with the argument of Section IO 
suggests, therefore, that assuming Prt = 1 is 
equivalent to the statement that the temperature 
fluctuations 8’ are spectrally similar to the 
velocity fluctuations u’. As mentioned earlier, 
no experimental evidence regarding this state- 
ment is at present available. 

On comparing (12.3) with the conditions 
(12Sa) and (12Sb) it is apparent that they also 
lead to the statement that T w Q,, which was 
mentioned earlier in Section 8, equation (8.7). 
It will be recalled that it was necessary to assume 
virtual constancy of the shearing stress in order 
to derive (8.9) which plays an important part in 
the exact theory to be described in Section 14. 

In the early extensions of Reynolds’ analogy, 
such as those due to Prandtl [4,68] or Taylor [5], 
the temperature field is determined by integra- 
tion, starting with* 

” + “I 
’ @ (12.7) 

v/Pr f vt/Prt ' cp dy ’ 

In order to make this possible, it is stipulated, 
quite arbitrarily, that the boundary layer can be 
divided sharply into a laminar sublayer and a 
fully developed turbulent layer, without direct 
reference to the actual conditions prevailing in 
them. It is assumed that in the laminar sublayer, 
extending from the wall to a provisional distance 
yr, the eddy coefficients are negligible. Hence 

or, by integration 

(12.8) 

where 81 and tit are the values of temperature 
difference and velocity at ye, 

The second integration is performed from the 
edge of the boundary layer inwards, and it is 

* It is now possible to replace the signs of partial 
differentiation by those of total differentiation, because 
integration is performed exclusively at x = constant and 
with respect to y only. 
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assumed that in the turbulent core the molecular 
coefficients are negligible. In addition it is 
assumed that Prt = 1, but the assumption of a 
constant value, as discussed in Section 9, would 
still permit the method to be applied. Hence 

Or 

(12.9) 

Elimination of the constant ratio (&/-QJ from 
(12.8) and (12.9) leads to a relation between 
61 and & in the form 

FIG. 12. Very low Prandti number. 

which can be used, in turn, to determine the 
constant ratio &,/rW, when we obtain 

(12.~0) 

cp&l& 
qW = 1 + (zzt/&j(PT-q TuJ 

(Prandtl-Taylor). (12.11) 

more, the omission of the term v/Pr from (12.2) 
is no longer justified, because the term can 
become comparable with vt/Pr:, even in the 
turbulent zone, when Pr < 1, as is the case 
with molten metals. 

difference at the edge of the velocity boundary 
layer, f$, differs considerably from 8,. Further- 

This constitutes the fundamental result of the 
theory; it was derived independently by Prandtl 
and Taylor. In order to complete the derivation, 
it is necessary to stipulate a value for C at the 
arbitrary boundary separating the two layers. 
This can be done directly with reference to the 
universal velocity profile, or indirectly, by 
fitting (12.11) to experimental results in heat 
transfer. * 

From the preceding derivation it is clear that 
the theory implies two serious limitations on its 
applicability to Prandtl numbers whose values 
differ appreciably from unity. At Pr = 1, the 
relation merely reduces to the Reynolds analogy 
once more. At verv low Prandtl numbers, the 
derivation is in serious error, because then the 
thermal boundary layer is much larger than 
the velocity boundary layer, Fig. 12. This means 
that the limits of integration in (12.9) have been 
chosen improperly, because the temperature 

* For the simple approach under discussion, it is not 
surprising that these two methods of fitting give notice- 

bly different matching conditions. 

At very high Prandtl numbers, the opposite 
relation between the two boundary layer thick- 
nesses prevails, and the assumptions are justified. 
Thus the method is valid for moderately high 
or very high Prandtl numbers. In the latter case 
the arbitrary subdivision of the boundary layer 
into two sharply delineated zones constitutes 
a serious limitation and must eventually be 
replaced by one which more nearly fits the actual 
circumstances. 

Since the preceding elementary theory is still 
widely used in practice we shall record the final 
result which is obtained when the explicit 
expression for shearing stress obtained from the 
1/7th power law is substituted in it, and when a 
value 111 is chosen which corresponds to S;t = 5. 
Then 

Pr 5 TW 
___ =-_ 

u, urn J( ) p 

and rw = 04296 p 02, Re,-Q*p. 

The final equation can be given several equi- 
valent forms depending on whether the use of 
the Nusselt or Stanton number is preferred. In 
terms of the former 



HEAT TRANSFER ACROSS TURBULENT, INCOMPRESSIBLE BOUNDARY LAYERS 171 

O-0292 Re@+ Pr 
jQ&$ = -- ___.__.? 

It is evident from the preceding remarks that 

1 + 2.12 Re,-“‘l(Pr - 1) * (12*12) the introduction of TV as a function of x into 

The relation resulting from this equation has (12.1 I) is heuristic, and that the fmaf relation 

been plotted in Fig. 13 from which it is seen that cannot apply to Prandti numbers differing 

it leads to a virtually linear plot in logarithmic appreciably from unity, or for surfaces other 

co-ordinates. For this reason it is customary than a flat plate. This is fully confirmed by 

to replace it by the equation experiment, and sometimes the factor 2s 22 in the 

M.iS = &f Re, PF3 (12*lza> 
denominator of (12.12) is replaced empirjcally 
by a function of the Prandtl number to counter- 

which can be fitted to it on a numerical basis, act this deficiency to a certain extent. 

I;io. 13. Variation of Nusek number with Reynolds and Prandtl numbers on a ftat plate. Theory due to 
F?adtl and Taylor. 
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The subsequent developments, notably those 
due to von K&man [34], Martinelli [57], 
Rannie [44], Deissler [69, 70, 36, 71, 72, 64, 731, 
van Driest [65, 351 and Loitsianskii [74], 
followed the preceding pattern of derivation, 
but attempted to improve the resulting equations 
by choosing smoother, and more accurate 
expressions for the law of the wall. von Karman’s 
assumptions listed in Table 4 led him to derive 
the equation 

Nuz _ -.__.. 
$Re,cf 

__ 

1+52/(&cf)(Pr- l)+ln [1+5/6(Pr-- l)]’ 

(12.13) 

For Prandtl numbers close to unity, this expres- 
sion differs little from the Prandtl-Taylor 
equation (12.12), as expected. Its range of 
applicability extends to somewhat higher Prandtl 
numbers (about thirty), but it also fails to take 
into account the circumstances which are charac- 
teristic of very low Prandtl numbers. 

Particularly extensive, and successful within 
the limitations of the method, were the investiga- 
tions undertaken by Deissler [69, 70, 36, 71, 
72, 64, 731. The analytic form of the law of the 
wall used in these calculations has been listed 
in Table 4. Owing to its complex form, and to 
the fact that it consists of two different expres- 
sions for the ranges 0 < y+ < 26 and Y-+ > 26, 
all integrations must be performed numerically. 
The assumption of a law of the wall determines 
implicitly an expression for the eddy viscosity, 
and this, together with the assumption Prt =: 1, 
determines an expression for the eddy con- 
ductivity, Thus all quantities in (12.2) have been 
determined by suitable assumptions, and the 
equation can be integrated. This is best done by 
first casting it in dimensionless form in terms 
of the reduced temperature 

when it becomes 

(12.14) 

(12.15) 

or alternatively 

(12.15a) 

D. RICHARDSON 

Upon integration, this equation leads to a 
family of universal velocity profiles with the 
Prandtl number as a parameter. In the range 
0 < y’- < 26, where the more complex expres- 
sion is used, see Table 4, the temperature profile 
is given by the differential equation 

d6’- 1 
_-== 
d.v+ l/Pr + n%+Y+[l - exp (-nQ+Y+)] 

(0 : : I” z’: 26). 

(12.16) 

In the range y.‘- :> 26, the Prandtl-Karman law 
of the wall is used, IlPr is neglected with 
respect to (c+ - l)/Prt in (12.15). and the 
equivalent simplification is made in the expres- 
sion for the shearing stress. Thus, the resulting 
expressions 

UC __ u;l _ tjlf __ ol!+, (y-i. > 26) 

and 

u+ - “1) , (K = 0.36) ( 

are entirely equivalent to (12.9) and (12 

12.17) 

2.17a) 

10) of 
the elementary Taylor-Prandtl theory described 
earlier, the difference consisting merely in 
the choice of the law of the wall (including the 
choice of K = 0.36 instead of K = 0.4) and in 
the choice of y:- = 26 instead of Yf = 30 for 
the buffer layer in von K&-man’s theory. 

The universal temperature profiles which 
result from the numerical integration of (12.16), 
together with the relation from (12.17) and 
(12.17a), are shown in Fig. 14. Two curves 
resulting from the Prandtl-Taylor expression 
(12.9) namely for Pr = 30 and Pr = 300, have 
been added for comparison to illustrate the 
limitations of (12.12). It is clear that the major 
difference between the two procedures lies in 
the choice of the law of the wall in the neigh- 
borhood of the wall. Hence, for the same 
reasons as before, Deissler’s theory cannot be 
valid for very low Prandtl numbers. It has, in 
fact, been used only for Pr > 0.73. 

Deissler [64] developed his theory to include 
the compressible boundary layer on a flat 
plate. There is no difficulty in outlining its 
application to the present case. It is realized that 
the universal velocity profile by itself does not 
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FIG. 14. Universal temperature profih. after Deissler [36], Broken curves from (12.9) after Prandtl-Taylor. 

represent an actual velocity profile, since it 
contains the ratio T&C& as a parameter, (12.14}, 
in analogy with (12.8) and (12.9). In order to 
develop the theory, it is only necessary to adjust 
the boundary conditions for temperature in the 
same way as before, the difference being that 
now numerical methods must be substituted for 
explicit formulae. This calculation can be 
simplified if it is noted that the local Stanton 
number 

can be expressed in terms of the reduced 
quantities 

i)+) Tt(: 
uz = e and 82 = - - - 

27, qu 

as 

St= l u+B+’ (12.18) 
*co 

Knowing 7w it is possible to calculate U$ and 
to determine the value of yf which corresponds 
to it. The latter, together with the graphs in 
Fig. 14, determines 8 2 for given values of Q 
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and Pr, and so the Stanton number. This 
relation is entirely equivalent to (12.12) or 
(12.13); the Stanton number was chosen here 
because it contains no characteristic length, 
and constitutes a local quantity. 

Deissler employed an equivalent procedure 
for heat transfer in pipes and channels, and the 
resulting relations led to very good agreement 
with experimental data for 0.73 < Pr < 4000. 
The same is also true of the extension to com- 
pressible boundary layers on flat plates. Con- 
sequently, it might prove useful in boundary 
layer calculations if an elementary approach is 
considered to he desirable. 

13. EXTENSIONS OF THE ELEMENTARY 
THEORY 

The elementary theory of heat transfer has 
been successfully extended to the calculation of 
thermal entry lengths in pipes and channels 
[70, 75, 761, but no detailed discussion need be 
given here because a mathematically exact 
theory is now available, Section 14. A further 
extension includes the case of variable viscosity 
[71] which is of interest, since the exact theory 
has not been developed in sufficient detail, and 
the elementary theory can serve as an illustration 
of the trends to be expected where this impor- 
tant phenomenon is taken into account. Owing 
to the differences in the manner in which the 
viscosity depends on temperature,* the theory 
for liquids must be formulated separately from 
that for gases. The real variation of the viscosity 
of liquids with temperature is approximated by 
the empirical relation 

where 

(13.1) 

where t is measured with respect to a suitabij. 
selected zero (usually O’F) to ensure a good fit. 
The exponent d must also be fitted empirically, 
and for liquids its value ranges from d =: -- I to 
d 1 --4. With these assuniptions, Deissler’s 
universal temperature and velocity profiles 
for y+ < 26 now become 

duy- 1 --= 
dy+ (1 - @set-), + nzu+y’ + --- 

[l --- exp (--nQ+y-+/(l -- be+)a)] 

and 

(13.4) 

d8’ 1 
dyi= l/Pr, + nau+y+ 

--___- . (13.5) 

(1 - exp [-n”u+y+/(l - @+)d]} 

For larger values of U+ the terms containing 
variable viscosity are neglected, and the theory 
for constant properties in its simplified form: 
(12.17) and (12.17a) are used. Numerical inte- 
grations lead to the universal profiles shown in 
Figs. 15 and 16 with /3 as a parameter, d = -4 
and for Prw = 10. It is noted that the effect of 
changing the sign of p (fl > 0 addition of heat, 
/3 < 0 extraction of heat for a liquid) is opposite 
on velocity and temperature. The universal 
velocity and temperature profiles can now be 
utilized to yield relations for the Stanton 
number, (12.1 S), in the same manner as was the 
case with constant viscosity. 

The variation of thermal conductivity, vis- 
cosity and density with temperature in gases 
can also be accounted for in the particular case 
when 

P T 
and - ._: -- , 

pw Tw 

In the case of liquids this corresponds to the (T, Tw absolute temperatures) but for details 

assumption the reader is referred to the original paper [36]. 

iL ‘t 6 -_r= .- 
CLW ( 1 

The success of the elementary theory described 

tw 
(13.3) in this as well as in Section 12 seems to suggest 

that under the present circumstances the result 
might be insensitive to the variation of the 

l It increases with temperature in gases, but decreases ratio T/G with transverse distance y. This detail 
in liquids. is also discussed [72, 641. 
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lo loo 
Y+ 

1000 10000 

Fro. 15. Deissler’s [36] universal temperature profiles, for a liquid with t = 
0 
_! -’ 

r, t,,-reference temperatures (fi > 0 addition of heat, fl < 0 extractiorof he:). 

FIG. 16. Deissler’s I361 universal velocity profiles for a liquid with k = 1 -4 
0 
,-_ 

f. tw- reference temperatures (B > 0 addition of heat, ,9 < 0 extra$ion of heat). 
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14. SPALDING’S EXACT THEORY 

An exact theory of heat transfer across tur- 
bulent boundary layers becomes possible, if it is 
realized that the von Mises form of the energy 
equation can be integrated without the need to 
precede the calculation by an explicit integration 
of the equation of motion (5.1) when use is 
made of the law of the wall, (6.2). This circum- 
stance was first recognized by Spalding [2]. From 
what has been said before, it is clear that such 
a theory will be exact on/y in the mathematical 
sense, since the derivation of the differential 
equations, the explicit expression for the law 
of the wall to be used, and the relation between 
the eddy conductivity and eddy diffusivity implied 
in the assumption concerning the turbulent 
Prandtl number Prt are all of an empirical 
nature. To be more precise, the expression for 
the dimensionless effective viscosity c~c arising 
from (8.9) and (8.10) is used, it being possible 
to interpret the derivations in one of two ways. 
If it is assumed that the law of the wall is exact. 
then the adoption of (8.9) implies that T m rU 
which in turn restricts the result to cases when 
conditions (12Sa) and (12.5b) are satisfied. 
Alternatively, it can be asserted that the expres- 
sion for E+ in terms of U+ or y’- constitutes the 
starting point of the theory and this would 
merely imply that the law of the wall is only 
approximate, a fact which can be said to be 
consistent with the diagram in Fig. 8. 

The crucial transformation consists in intro- 
ducing the two independent variables, W+ 
defined in (6.3) and 

1‘ xi- c 
s 

c (X) 
-: ds. (14.1) 

z,, 

A scrutiny of the energy equation 

fG> 4 (14.2) 

in which the temperature difference 4 is expressed 
as a function of the co-ordinate x and the 
stream function #, reveals that the new variables 
s+ and u+ depend each on one of the old variables 
only. In particular, as seen from (14.1), x+ 
depends on x alone, and it has been shown in 
Section 8 that u+ depends on # alone. Con- 
sequently ax+/a# = &+/ax = 0, and the trans- 

formation becomes particularly simple. Noting 
that ds+/d.y -~ L>.+/v and that d&/d+ :-~ I /(vu t E +), 
we find that 

lnserting these values into the energy equation 
(14.2) it is easy to verify that it now becomes 

where &w, x’) is expressed as a function of the 
reduced co-ordinate x’~ and reduced velocity u+. 

The determining equation (14.3) is a form of 
the Fourier equation in which the thermal con- 
ductivity (replaced here by l/Pre) appears as a 
function of position (replaced here by the reduced 
velocity u+) and which is multiplied by the 
variable coefficient l/( E 1 u +). It can be integrated 
numerically if proper assumptions are made 
about the effective Prandtl number and about the 
law of the wall which specifies E t in terms of u+. 
The boundary conditions most appropriate for 
the integration of (14.3) are 

4 = 1 at x’ 1 -= 0 and all u ‘~ :- 0 1 

d = 1 at U. =- cc: and all x 1 :a 0 ) (14.4) 

d y= 0 at u 1 -- 0 and all .x+- :- 0, j 

so that nov,. 

(14.5) 

has been normalized with respect to T,, - T,. 
The boundary conditions are characteristic 
of the case when a thermal boundary layer 
begins to develop from .Y = x0 onwards, 
Fig. 17. Owing to the fact that the energy 
equation is linear, the basic solution can be 
adapted to any set of linear boundary conditions 
by superposition. 

The energy equation in the form (14.3) to- 
gether with the required physical assumptions 
and boundary conditions (14.4) defines a univer- 
sal function 

1(x ‘, u-f, Pr), (.14.6) 
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FIG. 17. Boundary conditions for Spalding’s energy 
equation. 

since 

contains the Prandtl number within it. As usual, 
interest is centred only on the derivative 

(14.8) 

and numerical integration can confine itself to 
this Spalding function. This is due to the fact 
that the Stanton number, the skin friction co- 
efficient and the Spalding function are connected 
by the relation 

St = sp(gc,f)l~2, (14.9) 

which serves as a basis for the solution of heat 
transfer problems. It is realized that (14.9) does 
not itself constitute a solution, and that now, but 
not before the integration of the differential 
equation, it is necessary to determine the 
distribution of the friction velocity L’* or skin- 
friction coefficient cf along the wall. This will 
yield the variation of the Stanton number in 
terms of _Y+~, and (14.1) will provide the relation 
_Y-(x), so that the function St(x) can be estab- 
lished. 

The task of tabulating the Spalding function 
for different values of the Prandtl number and for 
different assumptions concerning the turbulent 
Prandtl number, Prt, is yet to be performed. 
So far, only the simplest case when 

Pr, = 1 

has been integrated numerically by Spalding 
21 

[l].* The case when Pr, = I includes the one 
for which Pr = Prt = I simultaneously. The 
function 

Sp(;Y’~. I ) (14.10) 

is shown plotted as curve (a) in Fig. 18. Spald- 
ing’s equation (8.4a) for the law of the wall is 
particularly well-adapted to the form of (14.3) 
because it leads directly to an expression for E ! 
in terms of 11 L. (8.5). The present values are some- 
what tentative. since the optimum numerical 
values for the coefficients in (8.4a) are uncertain. 
The significance of curve (b) marked “Light- 
hill’s solution” will be explained in Section 17. 
Spalding [I] provided also an approximate, 
integral, explicit expression for the function 
( 14. IO), namely 

6’. 
s .~z 0.157 S:. + i2 B”A 4; t . . 

1 
T . 

(?I + 3)” B(“-1’A 
6: 13 
_<_. nl 4. . .. (14.11) 

where the thermal boundary layer thickness 67 
is given by 

& ;(‘2c_fJY. 
St 

(14.1,) 

As already mentioned, superposition can be 
utilized to include problems with complex 
temperature distributions, and in this connec- 
tion the papers by Lighthill [77], Tribus and 
Klein [78], Rubesin [79] and Eckert et a/. [80] 
are worthy of attention. 

15. EXTENSION OF SPALDING’S THEORY TO 

AXI-SYMMETRIC BOUNDARY LAYERS 

There is no difficulty in extending the method 
of the preceding section to axi-symmetrical 
boundary layers by the application of the 
Mangler transformation [81, 191. If X, y denote 
the co-ordinates for the equivalent two-dimen- 
sional case, then 

1 x 
.f = s r(s) 

R2 o 
r2(x) d.u; j = 

R ” 
(15.1) 

where r(x) describes the contour, and R is an 
arbitrary reference length. Correspondingly 

* A method of starting the solution from the singular 
point at .Y =- 0 is described in Section 17. 
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IO IO- IO- lo- IO- 

x+. v I *v* IX) dx 
IO 

FIG. 18. Spalding’s function, Sp(x+, l), for Pv, = 1 and for Spalding’s function, (8.4), [l]. 

(a) Spalding’s function, (14.10); 
(b) Lighthill’s solution, (17.13) with Pr = 1, [77]. 

where the prime denotes differentiation with 
respect to x. Hence 

,)z ‘- s u dy” = --- R ‘fidy. 
0 s 4-4 0 

This proves that it suffices to replace 4 in the 
equations of the preceding section by 

so that now 

R S# 

and the energy equation can be written 

._ __.._. - ) 

(15.2) 

(15.3) 

which simplifies to the same equation (14.3) as 
before. The only difference is in the calculation 
of the C-component of velocity and, evidently. 
the computation of TV. Otherwise, the 
numerical results of the preceding section can be 
transfered directly. 

16. BOUNDARY CONDITIONS 

The considerations of the preceding sections 
have resulted in a mathematical formulation of 
the problem of turbulent convection which is 
valid within the limitations of the physical 
assumptions which have led to it. However, the 
physical problem has not been solved completely 
owing to the fact that the boundary conditions 
for (14.2) have not yet been discussed in sufficient 
detail. 

When analysing an equivalent problem in 
laminar convection, the formulation of the 
boundary conditions for the energy equation 
presents little difficulty. In general, as we recall, 
it is necessary to specify values of the tempera- 
ture difference 0 at the wall (0 =I 0 at y = 0) and 
“at infinity” (0 = 0, at y = m), and to pre- 
scribe a temperature profile at some cross 
section s == x0. This is usually determined at the 
leading edge of the cylinder where one of two 
conditions prevail. The leading edge may be 
sharp, and then the physical problem is 
adequately described by specifying H _ &, at 
the leading edge (usually x0 = 0). Alternatively, 
the leading edge is blunt, and then the initial 
temperature profile is that which corresponds to 
Hiemenz’ stagnation flow where Frossling’s [82] 
Blasius series can be used. The simplicity of these 
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conditions is due to the fact that, generally 
speaking, any boundary. layer will at first be 
laminar. In the case of turbulent convection 
circumstances become more complex, and a 
complete and fully satisfactory classification of 
all important sets of boundary conditions can be 
obtained only in the course of further research. 

The first difficulty arises in connection with 
the condition “at infinity”. In laminar convec- 
tion it is sufficient to specify 0 = 8, at y = co, 
and the resulting solution for the temperature 
field 8(x, y), being of the boundary layer type, 
determines the thermal boundary layer thickness 
ST. This, in turn, is due to the fact that the 
condition u = U(x) can also be imposed on the 
velocity boundary layer at y = co. In the turbu- 
lent convection only a portion of the velocity 
boundary layer profile is adequately described 
by the universal law of the wall. It is, neverthe- 
less, used across the whole of the boundary 
layer to mitigate the mathematical difficulties 
and in the conviction that the major portion of 
the temperature drop takes place within it, and 
that it, consequently, constitutes the major 
portion of the resistance to heat flow. Moreover, 
as y+ * co, the velocity U+ --f co, and it is neces- 
sary to terminate the turbulent boundary layer 
at a value of U+ which corresponds to the free- 
stream velocity D(X). Thus the transition from 
E = 0 at the wall to 6 = D(x) at y > 8 is not 
smooth and asymptotic. As a result, it is neces- 
sary to specify the boundary condition for 
temperature in relation to this somewhat 
artificial edge of the boundary layer. As long 
as the thermal boundary layer thickness 8~ is 
smaller than this artificial velocity boundary 
layer thickness 6, the resulting solution consti- 
tutes a good approximation, it being assumed 
that 

f3 = 8, at 3’ = 6 or at U = O(X), 

see Fig. 19a. Then, the boundary layer character 
of the solution for 8(x) asserts itself. and the 
resulting temperature profile adequately deter- 
mines the thermal boundary layer thickness. 
Such conditions prevail for all values of the 
Prandtl number near a point where the thermal 
boundary begins to develop, on condition that 
it does so within a fully developed, turbulent 
velocity boundary layer for large values of the 

FIG. 19. Temperature boundary condition 
(a) 8~ < 6; (b) 8T > 6. 

Prandtl number, since then 811 < 6 at any 
position x. This circumstance explains why, in 
general, the elementary theories of turbulent 
convection, Section 12, have been much more 
successful for very high than for very low 
Prandtl numbers. 

The approximation is still an acceptable one 
in the case of gases, when the Prandtl number 
does not differ much from unity, and when 
Spalding’s heuristic approximation 

S&X+, Pr) = 5$(x+, 1) . Pr2i3 (16.1) 

can render good service. 
For low Prandtl numbers, circumstances are 

reversed, and, except for a short distance from 
a step in temperature, the thermal boundary 
layer continues to be much larger than the 
velocity boundary layer, Fig. 19b. The proper 
value, & in Fig. 19b, which exists at y = 6 can- 
not be determined and the method fails, particu- 
larly for extremely low Prandtl numbers, since 
the difference between 4, and 8, can become 
very appreciable indeed. This set of circum- 
stances, as is known [57], caused difficulties in 
the adaptation of the elementary theories of heat 
transfer to such very low Prandtl numbers as 
are characteristic of molten metals. 

It seems that two ways are open for further 
research in this respect. First, it might be 
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necessary to include an expression for the Ian 
of the bvake. particularly at high Reynolds 
numbers and at very low Prandtl numbers, since 
a large proportion of the temperature drop 
occurs across the wake-like zone of the boundary 
layer. This course is fraught \vith mathematical 
difficulties. 

The conditions at .Y so are also difficult to 
assess with certainty. It is known from the 
researches of Prandtl [83, 161 that a turbulent 
velocity boundary layer on a flat plate grows 
approximately as if it had been started at the 
leading edge, say by tripping, Fig. 20. Thus, at a 
distance .Y from the leading edge, and in the 

/’ / & ,,,,,, I,,, 

/////////mp. 
/ 

FIG. 20. Growth of a turbulent boundary layer on a 
flat plate. 

fully turbulent region, the velocity profile in a 
turbulent boundary layer which had passed 
through a laminar range and through the 
transition zone is the same as that which would 
start by being turbulent at the leading edge itself. 
It is possible to conjecture, but it is not certain, 
that the same applies to the temperature profile 
in cases when it starts to grow from a sharp 
leading edge. It is clear, however, that in most 
cases of practical interest. particularly in the 
case of blunt leading edges, the development of 
the temperature profile must be traced through 
the laminar region and through the transition 
zone. It is at present not clear what simplifica- 
tions, if any, can be made in this respect. 

* More precise experiments seem to indicate that this 
virtual starting point is located somewhat further down- 
stream. 

17. TWO I~IMITING CASES 

There exist tbo limiting cases of turbulent 
convection which can be solved from tirst 
principles and which are of some importance in 
their applications. 

(a) When the Prandtl number becomes ver) 
small, as is the case with molten metals. the 
greatest part of the temperature drop, Fig. 19b. 
occurs outside the velocity boundary layer. and 
in the case when PI 
Hence it is possible 
equation (5.3) that ii 

. 0 it is seen that i,, . 0. 
to assume in the energy 

O(s) Wit11 

and the equation can be written 

Since the process of heat transfer occurs across 
the wake-like turbulent zone, it is further per- 
missible to assume that of < kPlt/c,, and the 
resulting, simple equation 

can be solved, particularly when C(s) D., 
:~= constant. Its form is then 

(17.3) 

This is the Fourier equation in two dimensions 
for which many solutions exist [97] in the theory 
of heat conduction. These can be readily 
adapted to the preceding case of so-called “slug 
flow”. The theory of slug flow has been developed 
systematically [69, 84, 60, X5. 57, 611. Experi- 
mental measurements for low Prandtl numbers 
have also been reported [ 12, 86. 85. 871. In the 
case of a flat plate. the boundary conditions are: 

0 = 0, at ~1 z 8x8 for all .Y _ 0 

ri =: 19~ at .Y 0 for all J’ ... 0 

0 = 0 at J’ -= 0 for all s 0 

and the solution is 

0 == 8, erf I ?’ 

.2[(U/0,) .Y]l 2 1 . 
(17.4) 
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Slug flow solutions constitute solutions 
limiting case when Pr -+ 0. When the Prandtl 
number is not extremely low, the layer adjacent 
to the wall will provide an additional resistance 
to heat flow which can be accounted for by 
noting that the temperature profile implied in 
(17.2) still constitutes a very good approxima- 
tion. It is then possible to determine the tem- 
perature &, Fig. 19b, at the edge of the velocity 
boundary layer and to improve the approxima- 
tion by re-computing the rate of heat transfer 
with the aid of the exact theory and the proper 
boundary conditions. At present this cannot be 
carried out owing to the absence of tables of the 
Spalding function for very low Prandtl numbers. 

(b) The second limiting case occurs for 
Pr -+ co. when most, and in the limit, all of the 
temperature drop takes place within the laminar 
sublayer. It is thus possible to obtain the solu- 
tion for turbulent convection by the use of the 
energy equation for laminar flow, together with 
the information that the mean veiocity profile 
in the laminar subiayer is linear. Since 

we have 

I 
71c = f.4 itf = constant 

and the equation of continuity leads to 

1 dt, 

Inserting these values into the heat energy equa- 
tion (5.3) with 4t = 0, we obtain 

Readers familiar with the theory of heat transfer 
through compressible boundary layers will 
recognize that this equation, in von Mises’ form, 
was solved by Lighthill [77] for the incompress- 
ible case by the use of operational methods, and 
for the case when the wall temperature distribu- 
tion is arbitrary. There is no difficulty in indica- 
ting an elementary derivation of the solution for 
a constant wall temperature applied from 

.Y = x,, onwards, when the boundary conditions 
are : 

0 = &, at s == 0 and all y > 0 1 

B-&,aty-ccandallx>O (17.61 

oi = 0 at y = 0 and all x > 0. i 

The solution must be of the self-similar type, 
there being no length parameter in the boundary 
conditions, but the appropriate similarity para- 
meter is not immediately apparent. However, it 

can be shown [88], or verified, that the substitu- 
tion 

transforms (17.5) into an ordinary differential 
equation for fI(?), namely 

$ + (‘I -t 2/3) ; = 0, (17.8) 

which can be solved by elementary methods. 
The boundary conditions are now 

B=8,atx=.~oandally>Oor~=m 7 

B--8,aty=~andallx>Oor17-co }(17.9) 

8-O aty=O andallx>Oor~=OI J 

The first integral of (17.8) is 

db’ 
dQ = C~T-~,‘~ exp (-7) 

so that the general solution is 

O(T) = c, + C# ;, 7 
i 1 

, (17.10) 

where y(a, s) is the incomplete gamma function 
I89,90] 

Noting that r(u, co) = r(u) and y(a, 0) = 0, and 
taking into account the boundary conditions 
(17.9), it is now possible to write down the com- 
plete, exact solution for our problem : 

em 1 
O(V) = pm) Y p ? 

( 1 
* (17.11) 

_ -_-. ~. ~--- -- _-- 
* A useful alternative form is 71’ = (y+)aPr]9xi. 
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In order to calculate the temperature gradient 
at the wall, it is necessary to determine the 
derivative 

In turn, in order to determine the derivative of 
the incomplete gamma function it is best to 
consider the series expansion [89, 901 

it being important to realize that 

VW&~ 01 = a, 

whereas the product (17.12) is non-singular. In 
this manner, it can be shown that 

It is convenient to re-arrange this equation so as 
to introduce the friction velocity v* = d(~~/p) 
and the Prandtl number Pr = v/a, when the 
form 

ae ( 1 0aoPrlt3 

ay y=. = m/3) 
. v*lv 

[fi. (v&9 cW3 

is obtained. In order to provide a basis of com- 
parison with Spalding’s theory, Section 14, it is 
necessary to introduce the Stanton number, 
(lOS), and to notice that v* = ~&(+c~). 
Substituting, further, the numerical constant 

1 
91/3ro = 0.53835, 

we obtain finally 

. pr-21’3, (17.13) 

where x+ has been defined in (14.1). 
The asymptotic solution (17.13) provides a 

good approximation for very large Prandtl 
numbers, when it can be used directly. Further- 
more, as x+ becomes closer and closer to zero, 
the present theory merges with the exact theory 
of Section 14 because any thermal boundary 
layer will develop first through the laminar sub- 
layer. The diagram in Fig. 18 shows that this is 

the case for Pr .::= I. when (17.13) can be used 
directly up to s r :m- 100 or so, depending on the 
required accuracy. Since (14.3) is singular at 
sr = 0, the numerical solution for any Prandtl 
number can be started with (17.13) and then 
continued step-by-step. 

For the sake of completeness it is useful to 
write down the formula for the local Nusselt 
number 

where 

and for the mean Nusselt number 

. 
Nu _J‘:*-!$?f!~ =0.8()743 f+.1/3(~1)2/:3 

cc 

where 
(17.14a) 

I = s - x0 and I-r = J\ [zl,(x)/v] ds. 

More explicit formulae for a flat plate at zero 
incidence will be given in another paper [88]. 

18. ROUGH SURFACES 

All preceding considerations have been re- 
stricted to the discussion of smooth surfaces. 
The effects introduced by roughness are of great 
practical importance, because roughness in- 
creases the rate of heat transfer, and because 
most practical surfaces are rough or develop 
roughness with use. In addition, the modifica- 
tions of the flow and temperature fields intro- 
duced by roughness occur mainly in or near the 
laminar sublayer, and their study might contri- 
bute to our understanding of the nature of 
laminar sublayers. On the other hand, the 
introduction of roughness elements seriously 
complicates our problem. For this reason, we 
shall confine ourselves to a few brief remarks, 
pointing out that an extensive discussion and a 
comprehensive list of references have been 
provided by Nunner [14] in his authoritative 
paper on this subject. 

It is superfluous to remark that with very few 
exceptions, e.g. [lo, 111, most measurements 
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involving rough surfaces have been restricted to 
pipe flow. The very extensive measurements on 
air flowing through rough pipes performed by 
Nunner revealed the interesting fact that the 
temperature profile remains virtually unaffected 
by the presence of roughness, in remarkable 
contrast with the effect of the latter on the 
velocity profile. It was further established that 
in rough pipes the relation between the tem- 
perature ratio e/e,, (where 0, denotes the tem- 
perature difference along the center-line) and the 
velocity ratio zi/& is very nearly the same as that 
for different Prandtl numbers in smooth pipes, 
increasing roughness corresponding to increasing 
values of Prandtl number. The only difference 
consists in the fact that an increase in Prandtl 
number leaves the velocity profile unaffected, 
but modifies the temperature profile, the effect 
of roughness being opposite. From this it can 
be surmized that the presence of roughness 
elements gives rise to form drag by introducing 
numerous wakes into the boundary layer, there- 
by modifying the velocity profile. The tempera- 
ture profile, whose shape is largely determined 
by the temperature gradient in the laminar sub- 
layer remains, therefore, relatively unchanged. 
The increased turbulence caused by the rough- 
ness elements merely reduces the resistance of 
heat flow through the turbulent layer and exerts 
a minor influence on the temperature profile. 

Bearing these facts in mind, Nunner applied 
Prandtl’s elementary theory (see Section 12) to 
the calculation of heat transfer rates. He sharply 
divided the boundary layer into a laminar sub- 
layer, followed by a wake-layer created by the 
roughness elements, and by the usual turbulent 
core. Assuming that the shearing stress across 
the wake-layer varies from that characteristic of 
rough flow, rr = &PO:, on the side of the 
turbulent core, to a value T = ;cfpQ character- 
istic of a smooth wall at the same Reynolds 
number on the side adjacent to the laminar sub- 
layer, he was able to replace (12.11) by 

&crr Re, Pr 
Nu, = --_- 

1 i- Cl/U, (cfrlcf Pr - 1’ 
(18.1) 

when Prt = 1 is assumed. If a different but 
constant value of Prt is thought to be more 
appropriate, the Prandtl number Pr should be 

replaced by the ratio Pr/Prt. Equation (18.1) 
was derived by Nunner for the case of a pipe, 
and has been rewritten here in an equivalent 
form applicable to a flat plate; it can be trans- 
formed in the same way as (12.1) in Section 12. 
A comparison with experiment shows that the 
working formulae which follow from (18.1) are 
reasonable for Pr M 1, but fail already at Pr = 7, 
which is not surprising. 

An attempt to provide a more exact theory for 
rough surfaces could be based on van Driest’s 
[35] law of the wall which assumes the particu- 
larly simple form 

E+ = 3[1 + (1 + 0.64y+z)&] (18.2) 

for completely rough walls. For a given relative 
roughness k+ = v,k[v, where k is the height of 
a roughness element, the expression 

E+ = 4 (1 + [l + 4K2y+2 1 - exp (--y+/26) 

+ exp (-60y+/26k+)2]1/2) (18.3) 

with K = 0.4 might be used. A complete solu- 
tion would entail the skillful elimination of y+ 
in favor of U+ in (18.2) and (18.3) and an 
integration of (14.3). 

19. OUTLINE OF MALKUS’ THEORY OF 
TURBULENT FLOW AND FREE CONVECTION 

In the last few years, an attempt has been 
made to analyse turbulent convection upon quite 
different lines from those described above. In- 
stead of using the Reynolds equations (whose 
appropriateness is not beyond dispute) and then 
postulating reasonably credible mechanisms to 
account for the observed velocity, friction and 
heat transfer measurements, this analysis starts 
with the complete and unaveraged Navier- 
Stokes equations and introduces some postulates 
of a physical character, from which velocity 
distributions and transport rates have been 
derived without introducing any empirical 
information. The approach under discussion is 
made with the understanding that previous semi- 
empirical approaches possess unsatisfactory 
features in that they are not general enough to 
cover many different problems. However, any 
more general theory may be expected to have 
greater mathematical complexity, and initial 
attempts are best made with problems having 
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simple initial and boundary conditions. No 
attempt has yet been made to apply the approach 
directly to the central problem of incompressible 
turbulent boundary layer convection. 

Two specific cases were investigated by 
Malkus: the Rayleigh horizontal heated plate 
problem [91, 921, and flow between two parallel 
surfaces [93]. For both problems Malkus 
investigated the stability of the mean flow, and 
considered the velocity as a Fourier sine series 
with the primary argument based upon the 
separation distance of the surfaces which form 
the boundaries of the problems. For the Rayleigh 
problem the temperature field was represented 
in a similar way. Malkus then introduced the 
assumption that the series for the local convec- 
tive transport of heat or momentum terminates 
at some finite harmonic of the primary argument. 
This finite harmonic value is interpreted with the 
aid of the stability equation to correspond to a 
minimum effective eddy size. This is taken to 
indicate that all “eddies” down to some 
minimum size make an effective contribution to 
the transport of heat, whilst all eddies of smaller 
size are essentially dissipative and contribute 
negligibly to transport. Good correspondence 
with experiment is found for net heat transfer in 
the Rayleigh problem. For the case of flow be- 
tween parallel planes, Malkus observed that the 
“scale” of motion in the solution of the mean- 
flow stability equation is determined by the 
imaginary portion of the derivative of the stream 
function, the largest value of which occurs in the 
laminar sublayer adjacent to the boundary. 
From this it is clear that the mean-flow stability 
characteristics of the laminar sub-layer deter- 
mine the smallest effective “eddy” size, and 
thereby determine the characteristic energy 
dissipation rate. In this view, the laminar sub- 
layer contains a mean flow which is stable at 
very high Reynolds numbers, and which permits 
oscillations of finite amplitude down to some 
scale which is related to the characteristic 
minimum eddy size. Thus the laminar sublayer 
is recognized as playing a specific critical part 
in determining the characteristics of the turbu- 
lent layer. 

Using a variational method, and introducing 
some mathematical approximations, it is possible 
to derive the logarithmic velocity law, the 

appropriateness of which has been ampi> 
demonstrated by experiment. Malkus evaluated 
the von Karman constant and found excellent 
agreement with that measured by Laufcr [41]; 
the “logarithmic intercept”. however. did nor 
correspond well, being only about 0.6 of the 
experimental value. 

Further natural convection experiments [9-I] 
have shown good agreement with Malku\’ 
theory, and the existence of an apparent relation 
between laminar instability parameters and 
turbulent heat transfer has been noticed for 
certain other flows [95]. For larger physical 
scales of motion. comparisons have been made 
in meteorology, e.g. [83], whilst for astrophysich 
a modified analysis has been presented [96] in 
which an allowance is made for non-linear 
interactions between modes, a detail which has 
not been studied explicitly in Malkus’ work. 

20. CONCLUDING REMARKS 

In the preceding sections we have attempted 
to review the present understanding of heat 
transfer across incompressible, turbulent bound- 
ary layers and to formulate a consistent method 
of analysis based upon it. The aim has been to 
reduce the problem to the solution of a differen- 
tial equation, as is done in the case of laminar 
flow. In turbulent flow, the derivation of this 
fundamental equation cannot be carried out 
without making a number of empirical assump- 
tions. and in developing this review it becomes 
clear that there remain several important 
questions which are. as yet, unanswered. These 
questions are of critical importance and must be 
resolved before this theory can be accepted as a 
definitive one. In this section we propose to review 
once again these outstanding problems. 

The development of the averaged differential 
(Reynolds) equations as described here is predi- 
cated upon a number of assumptions. The 
assumption of constant properties is essentially 
one which limits application to small temperature 
differences, but no investigation has been made 
which gives an understanding of what can be 
considered in practice as small temperature 
differences for various fluids. We may note that 
such a study is yet to be made not only for 
turbulent flows, but also for laminar flows. The 
assumptions regarding the spectral similarities of 
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velocity and temperature fluctuations need to be 
studied, as do the assumptions regarding the 

fluctuation correlations, e.g., B’u’. No convinc- 
ing proof has been offered which would show 
that the Boussinesq assumption is consistent 
with the nature of the fluctuation correlations. 

The semi-empirical theories will make use, in 
one way or another, of the universal velocity 
profile. The extent to which this profile is 
altered by temperature differences, exerting their 
influences through their effect on the fluid 
properties, has not been examined systematically. 
Knowledge of the extent of such an effect is 
essential before confidence can be developed in 
the application of the semi-empirical theories to 
many cases of practical importance, especially 
those involving liquids. For cases where tem- 
perature differences cause a large variation of 
kinematic viscosity, it is not known how to 
form the reduced quantities U+ and y+. In 
particular, it is not known whether local values 
of G’* and V, or the values at the wall, should be 
used. 

The universal velocity profile is not essentially 
a velocity profile, for there is no universal value 
of U+ (or correspondingly of JJ+) to which it can 
be asserted that the external stream velocity 
should be matched. The range of U+ for which the 
law can represent boundary layer velocities 
depends in some way upon parameters such as 
the Reynolds number and the roughness. In 
reality, the universal velocity profile serves as an 
empirical statement of the variation of the 
dimensionless effective viscosity E+ with the 
flow parameters. As stated in Section 8, it is 
possible to adopt one of two points of view. 
First the theory can be formulated on the 
assumption that there exists a universal form for 
E’ which is valid in all layers, except the outer, 
wake-like region. In this case all that is necessary 
is to determine which one of the proposed 
analytic expressions provides the best agreement 
with experimental data. Alternatively it can be 
asserted that the universal velocity profile 
constitutes the primary datum. It then becomes 
necessary to assume that 7 = 7us in order to 
complete the theory and the question arises as 
to how well and in what circumstances this 
assumption is borne out by experiment, and 
whether, perhaps, the final result is simply in- 

sensitive to transverse variations in T. In the 
first case, the existence of a single universal law 
of the wall would have to be considered as an 
acceptable approximation and it will be found 
that it may vary somewhat with x. that is, 
essentially, with the Reynolds number. 

It is, further, apparent that for very high 
Reynolds numbers, and for low Prandtl num- 
bers, the wake region becomes significant in 
determining the convective behavior of the 
flow. No extensive investigations have been 
made of this. 

The present confusion and lack of agreement 
about the behavior of the turbulent Prandtl 
number is highly unsatisfactory, particularly as 
it affects the application of the semi-empirical 
theories. 

We have indicated the connection between the 
Navier-Stokes and energy equations and the 
corresponding Reynolds and averaged energy 
equations and their boundary layer forms, with- 
out, however, being able to indicate a rigorous 
derivation or to provide evidence of the time- 
dependent similarities within the flow or at the 
boundaries. In this connection it has been dis- 
covered that this assumption of spectral similar- 
ity between the velocity fluctuations u’ and the 
temperature fluctuations O’, which is necessary 
to assure the similarity of the average profiles 
zi(y) and B(y), seems to be related to the assump- 
tion that Prt = 1 in the Boussinesq formulation 
of the problem. It would be interesting to explore 
whether the apparent equivalence of these two 
alternative assumptions is accidental or whether 
it has a basis in physical fact. An attempt has 
been made to indicate the relationship between 
the laminar sublayer on the one hand and the 
laminar boundary layer under a turbulent free 
stream on the other. The characteristics which 
mutually relate these flows do not appear to 
have been generally recognized ; and, corres- 
pondingly, the implications of the stable 
oscillating character of the flow have not been 
fully explored in either case. The importance of 
events within the laminar sublayer to the 
phenomena in the regions of developed turbulent 
flow is indicated not only by the discussion in 
Section 7, but also in Malkus’ analysis of 
turbulent shear flow, Section 19. From these 
considerations, it is clear that laminar sublayers 
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and laminar boundary layers associated with 
turbulent free streams deserve careful investiga- 
tion. 12. 
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Zusammenfassung-Fiir den Warmetibergang in I turbulenter Grenzschicht bei erzwungener Kon- 
vektion wird hier ein Uberblick iiber den gegenwlrtigen Stand der Kenntnisse vermittelt. Die Grund- 
lagen der halbempirischen Theorie werden von Anfang an nachgepriift und ihre Grenzen sorgfaltig 
aufgezeigt. Elementare Theorien sind beschrieben und eine Zusammenfassung der mathematisch 
exakten Theorie von D. B. Spalding ist angegeben. Die Grenzfllle sehr hoher und sehr niedriger 
Prandtlzahlen werden diskutiert. Auch ist die Theorie der turbulenten Prozesse von W. V. R. Malkus 
zusammengefasst angeftihrt. Eine gewissenhafte Untersuchung galt der Klarung aller physikalischen 
Annahmen, um die dringlich zu beachtenden Grundprobleme und dei Erweiterungsmoglichkeiten der 

halbempirischen Theorie angeben zu konnen. 
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